Coverage Report

Created: 2024-09-08 06:06

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.50k
{
81
1.50k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.50k
  int ci, blkn, dctbl, actbl;
83
1.50k
  d_derived_tbl **pdtbl;
84
1.50k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.50k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.50k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
76
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
6.05k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
4.54k
    compptr = cinfo->cur_comp_info[ci];
96
4.54k
    dctbl = compptr->dc_tbl_no;
97
4.54k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
4.54k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
4.54k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
4.54k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
4.54k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
4.54k
    entropy->saved.last_dc_val[ci] = 0;
106
4.54k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
6.65k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
5.14k
    ci = cinfo->MCU_membership[blkn];
111
5.14k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
5.14k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
5.14k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
5.14k
    if (compptr->component_needed) {
117
5.14k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
5.14k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
5.14k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
5.14k
  }
124
125
  /* Initialize bitread state variables */
126
1.50k
  entropy->bitstate.bits_left = 0;
127
1.50k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.50k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.50k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.50k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
10.2k
{
146
10.2k
  JHUFF_TBL *htbl;
147
10.2k
  d_derived_tbl *dtbl;
148
10.2k
  int p, i, l, si, numsymbols;
149
10.2k
  int lookbits, ctr;
150
10.2k
  char huffsize[257];
151
10.2k
  unsigned int huffcode[257];
152
10.2k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
10.2k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
21
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
10.2k
  htbl =
162
10.2k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
10.2k
  if (htbl == NULL)
164
6
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
10.2k
  if (*pdtbl == NULL)
168
5.29k
    *pdtbl = (d_derived_tbl *)
169
5.29k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.29k
                                  sizeof(d_derived_tbl));
171
10.2k
  dtbl = *pdtbl;
172
10.2k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
10.2k
  p = 0;
177
173k
  for (l = 1; l <= 16; l++) {
178
163k
    i = (int)htbl->bits[l];
179
163k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
974k
    while (i--)
182
811k
      huffsize[p++] = (char)l;
183
163k
  }
184
10.2k
  huffsize[p] = 0;
185
10.2k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
10.2k
  code = 0;
191
10.2k
  si = huffsize[0];
192
10.2k
  p = 0;
193
127k
  while (huffsize[p]) {
194
927k
    while (((int)huffsize[p]) == si) {
195
809k
      huffcode[p++] = code;
196
809k
      code++;
197
809k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
117k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
12
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
117k
    code <<= 1;
204
117k
    si++;
205
117k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
10.2k
  p = 0;
210
173k
  for (l = 1; l <= 16; l++) {
211
163k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
110k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
110k
      p += htbl->bits[l];
217
110k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
110k
    } else {
219
53.1k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
53.1k
    }
221
163k
  }
222
10.2k
  dtbl->valoffset[17] = 0;
223
10.2k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
2.62M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
2.61M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
10.2k
  p = 0;
236
91.9k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
229k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
147k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.72M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.58M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.58M
        lookbits++;
244
2.58M
      }
245
147k
    }
246
81.7k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
10.2k
  if (isDC) {
255
63.8k
    for (i = 0; i < numsymbols; i++) {
256
58.7k
      int sym = htbl->huffval[i];
257
58.7k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
9
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
58.7k
    }
260
5.04k
  }
261
10.2k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
4.66M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
583k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
583k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
583k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
583k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
583k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
4.66M
    while (bits_left < MIN_GET_BITS) {
303
4.08M
      register int c;
304
305
      /* Attempt to read a byte */
306
4.08M
      if (bytes_in_buffer == 0) {
307
124
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
124
        next_input_byte = cinfo->src->next_input_byte;
310
124
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
124
      }
312
4.08M
      bytes_in_buffer--;
313
4.08M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
4.08M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
49.2k
        do {
323
49.2k
          if (bytes_in_buffer == 0) {
324
0
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
0
            next_input_byte = cinfo->src->next_input_byte;
327
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
0
          }
329
49.2k
          bytes_in_buffer--;
330
49.2k
          c = *next_input_byte++;
331
49.2k
        } while (c == 0xFF);
332
333
35.8k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
32.6k
          c = 0xFF;
336
32.6k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
3.17k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
3.17k
          goto no_more_bytes;
348
3.17k
        }
349
35.8k
      }
350
351
      /* OK, load c into get_buffer */
352
4.08M
      get_buffer = (get_buffer << 8) | c;
353
4.08M
      bits_left += 8;
354
4.08M
    } /* end while */
355
579k
  } else {
356
7.25k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
7.25k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
528
      if (!cinfo->entropy->insufficient_data) {
368
528
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
528
        cinfo->entropy->insufficient_data = TRUE;
370
528
      }
371
      /* Fill the buffer with zero bits */
372
528
      get_buffer <<= MIN_GET_BITS - bits_left;
373
528
      bits_left = MIN_GET_BITS;
374
528
    }
375
7.25k
  }
376
377
  /* Unload the local registers */
378
583k
  state->next_input_byte = next_input_byte;
379
583k
  state->bytes_in_buffer = bytes_in_buffer;
380
583k
  state->get_buffer = get_buffer;
381
583k
  state->bits_left = bits_left;
382
383
583k
  return TRUE;
384
583k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.80M
#define GET_BYTE { \
392
1.80M
  register int c0, c1; \
393
1.80M
  c0 = *buffer++; \
394
1.80M
  c1 = *buffer; \
395
1.80M
  /* Pre-execute most common case */ \
396
1.80M
  get_buffer = (get_buffer << 8) | c0; \
397
1.80M
  bits_left += 8; \
398
1.80M
  if (c0 == 0xFF) { \
399
32.4k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
32.4k
    buffer++; \
401
32.4k
    if (c1 != 0) { \
402
18.9k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
18.9k
      cinfo->unread_marker = c1; \
404
18.9k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
18.9k
      buffer -= 2; \
406
18.9k
      get_buffer &= ~0xFF; \
407
18.9k
    } \
408
32.4k
  } \
409
1.80M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
4.69M
  if (bits_left <= 16) { \
416
300k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
300k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
206k
{
440
206k
  register int l = min_bits;
441
206k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
206k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
206k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
491k
  while (code > htbl->maxcode[l]) {
453
284k
    code <<= 1;
454
284k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
284k
    code |= GET_BITS(1);
456
284k
    l++;
457
284k
  }
458
459
  /* Unload the local registers */
460
206k
  state->get_buffer = get_buffer;
461
206k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
206k
  if (l > 16) {
466
92
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
92
    return 0;                   /* fake a zero as the safest result */
468
92
  }
469
470
206k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
206k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
4.50M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
4.50M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.56k
{
514
1.56k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.56k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.56k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.56k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.56k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
6.10k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
4.54k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.56k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.56k
  if (cinfo->unread_marker == 0)
539
1.51k
    entropy->pub.insufficient_data = FALSE;
540
541
1.56k
  return TRUE;
542
1.56k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
168k
{
554
168k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
168k
  BITREAD_STATE_VARS;
556
168k
  int blkn;
557
168k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
168k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
168k
  state = entropy->saved;
563
564
683k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
514k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
514k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
514k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
514k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
514k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
514k
    if (s) {
575
136k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
136k
      r = GET_BITS(s);
577
136k
      s = HUFF_EXTEND(r, s);
578
136k
    }
579
580
514k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
514k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
514k
      s += state.last_dc_val[ci];
592
514k
      state.last_dc_val[ci] = s;
593
514k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
514k
        (*block)[0] = (JCOEF)s;
596
514k
      }
597
514k
    }
598
599
514k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
3.28M
      for (k = 1; k < DCTSIZE2; k++) {
604
3.27M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
3.27M
        r = s >> 4;
607
3.27M
        s &= 15;
608
609
3.27M
        if (s) {
610
2.74M
          k += r;
611
2.74M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.74M
          r = GET_BITS(s);
613
2.74M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.74M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.74M
        } else {
620
531k
          if (r != 15)
621
503k
            break;
622
27.9k
          k += 15;
623
27.9k
        }
624
3.27M
      }
625
626
514k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
224
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
224
    }
647
514k
  }
648
649
  /* Completed MCU, so update state */
650
168k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
168k
  entropy->saved = state;
652
168k
  return TRUE;
653
168k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
256k
{
665
256k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
256k
  BITREAD_STATE_VARS;
667
256k
  JOCTET *buffer;
668
256k
  int blkn;
669
256k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
256k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
256k
  buffer = (JOCTET *)br_state.next_input_byte;
675
256k
  state = entropy->saved;
676
677
1.03M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
773k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
773k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
773k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
773k
    register int s, k, r, l;
682
683
773k
    HUFF_DECODE_FAST(s, l, dctbl);
684
773k
    if (s) {
685
97.3k
      FILL_BIT_BUFFER_FAST
686
97.3k
      r = GET_BITS(s);
687
97.3k
      s = HUFF_EXTEND(r, s);
688
97.3k
    }
689
690
773k
    if (entropy->dc_needed[blkn]) {
691
773k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
773k
      s += state.last_dc_val[ci];
696
773k
      state.last_dc_val[ci] = s;
697
773k
      if (block)
698
773k
        (*block)[0] = (JCOEF)s;
699
773k
    }
700
701
773k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.30M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.29M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.29M
        r = s >> 4;
706
2.29M
        s &= 15;
707
708
2.29M
        if (s) {
709
1.52M
          k += r;
710
1.52M
          FILL_BIT_BUFFER_FAST
711
1.52M
          r = GET_BITS(s);
712
1.52M
          s = HUFF_EXTEND(r, s);
713
1.52M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.52M
        } else {
715
766k
          if (r != 15) break;
716
298
          k += 15;
717
298
        }
718
2.29M
      }
719
720
773k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
773k
  }
738
739
256k
  if (cinfo->unread_marker != 0) {
740
495
    cinfo->unread_marker = 0;
741
495
    return FALSE;
742
495
  }
743
744
256k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
256k
  br_state.next_input_byte = buffer;
746
256k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
256k
  entropy->saved = state;
748
256k
  return TRUE;
749
256k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
425k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
425k
{
772
425k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
425k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
425k
  if (cinfo->restart_interval) {
777
40.2k
    if (entropy->restarts_to_go == 0)
778
1.56k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
40.2k
    usefast = 0;
781
40.2k
  }
782
783
425k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
425k
      cinfo->unread_marker != 0)
785
130k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
425k
  if (!entropy->pub.insufficient_data) {
791
792
424k
    if (usefast) {
793
256k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
256k
    } else {
795
168k
use_slow:
796
168k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
168k
    }
798
799
424k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
425k
  if (cinfo->restart_interval)
803
40.1k
    entropy->restarts_to_go--;
804
805
425k
  return TRUE;
806
425k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.52k
{
816
1.52k
  huff_entropy_ptr entropy;
817
1.52k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.52k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.52k
  entropy = (huff_entropy_ptr)
826
1.52k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.52k
                                sizeof(huff_entropy_decoder));
828
1.52k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.52k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.52k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
7.61k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
6.08k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
6.08k
  }
836
1.52k
}