Coverage Report

Created: 2024-09-08 06:05

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
772
{
81
772
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
772
  int ci, blkn, dctbl, actbl;
83
772
  d_derived_tbl **pdtbl;
84
772
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
772
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
772
      cinfo->Ah != 0 || cinfo->Al != 0)
92
6
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
2.93k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
2.16k
    compptr = cinfo->cur_comp_info[ci];
96
2.16k
    dctbl = compptr->dc_tbl_no;
97
2.16k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
2.16k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
2.16k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
2.16k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
2.16k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
2.16k
    entropy->saved.last_dc_val[ci] = 0;
106
2.16k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
3.61k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
2.83k
    ci = cinfo->MCU_membership[blkn];
111
2.83k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
2.83k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
2.83k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
2.83k
    if (compptr->component_needed) {
117
2.83k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
2.83k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
2.83k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
2.83k
  }
124
125
  /* Initialize bitread state variables */
126
772
  entropy->bitstate.bits_left = 0;
127
772
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
772
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
772
  entropy->restarts_to_go = cinfo->restart_interval;
132
772
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
4.46k
{
146
4.46k
  JHUFF_TBL *htbl;
147
4.46k
  d_derived_tbl *dtbl;
148
4.46k
  int p, i, l, si, numsymbols;
149
4.46k
  int lookbits, ctr;
150
4.46k
  char huffsize[257];
151
4.46k
  unsigned int huffcode[257];
152
4.46k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
4.46k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
4
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
4.46k
  htbl =
162
4.46k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
4.46k
  if (htbl == NULL)
164
5
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
4.46k
  if (*pdtbl == NULL)
168
2.07k
    *pdtbl = (d_derived_tbl *)
169
2.07k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
2.07k
                                  sizeof(d_derived_tbl));
171
4.46k
  dtbl = *pdtbl;
172
4.46k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
4.46k
  p = 0;
177
75.7k
  for (l = 1; l <= 16; l++) {
178
71.2k
    i = (int)htbl->bits[l];
179
71.2k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
443k
    while (i--)
182
372k
      huffsize[p++] = (char)l;
183
71.2k
  }
184
4.46k
  huffsize[p] = 0;
185
4.46k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
4.46k
  code = 0;
191
4.46k
  si = huffsize[0];
192
4.46k
  p = 0;
193
55.5k
  while (huffsize[p]) {
194
423k
    while (((int)huffsize[p]) == si) {
195
372k
      huffcode[p++] = code;
196
372k
      code++;
197
372k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
51.0k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
8
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
51.0k
    code <<= 1;
204
51.0k
    si++;
205
51.0k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
4.46k
  p = 0;
210
75.5k
  for (l = 1; l <= 16; l++) {
211
71.1k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
47.1k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
47.1k
      p += htbl->bits[l];
217
47.1k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
47.1k
    } else {
219
23.9k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
23.9k
    }
221
71.1k
  }
222
4.46k
  dtbl->valoffset[17] = 0;
223
4.46k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
1.14M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
1.13M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
4.46k
  p = 0;
236
40.0k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
98.7k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
63.1k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
1.18M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
1.12M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
1.12M
        lookbits++;
244
1.12M
      }
245
63.1k
    }
246
35.5k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
4.46k
  if (isDC) {
255
28.7k
    for (i = 0; i < numsymbols; i++) {
256
26.4k
      int sym = htbl->huffval[i];
257
26.4k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
23
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
26.4k
    }
260
2.29k
  }
261
4.46k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
116k
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
15.4k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
15.4k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
15.4k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
15.4k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
15.4k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
115k
    while (bits_left < MIN_GET_BITS) {
303
101k
      register int c;
304
305
      /* Attempt to read a byte */
306
101k
      if (bytes_in_buffer == 0) {
307
17
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
17
        next_input_byte = cinfo->src->next_input_byte;
310
17
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
17
      }
312
101k
      bytes_in_buffer--;
313
101k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
101k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
28.5k
        do {
323
28.5k
          if (bytes_in_buffer == 0) {
324
1
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
1
            next_input_byte = cinfo->src->next_input_byte;
327
1
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
1
          }
329
28.5k
          bytes_in_buffer--;
330
28.5k
          c = *next_input_byte++;
331
28.5k
        } while (c == 0xFF);
332
333
15.0k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
14.4k
          c = 0xFF;
336
14.4k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
652
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
652
          goto no_more_bytes;
348
652
        }
349
15.0k
      }
350
351
      /* OK, load c into get_buffer */
352
101k
      get_buffer = (get_buffer << 8) | c;
353
101k
      bits_left += 8;
354
101k
    } /* end while */
355
14.5k
  } else {
356
1.48k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
1.48k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
277
      if (!cinfo->entropy->insufficient_data) {
368
277
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
277
        cinfo->entropy->insufficient_data = TRUE;
370
277
      }
371
      /* Fill the buffer with zero bits */
372
277
      get_buffer <<= MIN_GET_BITS - bits_left;
373
277
      bits_left = MIN_GET_BITS;
374
277
    }
375
1.48k
  }
376
377
  /* Unload the local registers */
378
15.4k
  state->next_input_byte = next_input_byte;
379
15.4k
  state->bytes_in_buffer = bytes_in_buffer;
380
15.4k
  state->get_buffer = get_buffer;
381
15.4k
  state->bits_left = bits_left;
382
383
15.4k
  return TRUE;
384
15.4k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
73.2k
#define GET_BYTE { \
392
73.2k
  register int c0, c1; \
393
73.2k
  c0 = *buffer++; \
394
73.2k
  c1 = *buffer; \
395
73.2k
  /* Pre-execute most common case */ \
396
73.2k
  get_buffer = (get_buffer << 8) | c0; \
397
73.2k
  bits_left += 8; \
398
73.2k
  if (c0 == 0xFF) { \
399
26.0k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
26.0k
    buffer++; \
401
26.0k
    if (c1 != 0) { \
402
23.6k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
23.6k
      cinfo->unread_marker = c1; \
404
23.6k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
23.6k
      buffer -= 2; \
406
23.6k
      get_buffer &= ~0xFF; \
407
23.6k
    } \
408
26.0k
  } \
409
73.2k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
251k
  if (bits_left <= 16) { \
416
12.2k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
12.2k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
13.6k
{
440
13.6k
  register int l = min_bits;
441
13.6k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
13.6k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
13.6k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
44.6k
  while (code > htbl->maxcode[l]) {
453
31.0k
    code <<= 1;
454
31.0k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
31.0k
    code |= GET_BITS(1);
456
31.0k
    l++;
457
31.0k
  }
458
459
  /* Unload the local registers */
460
13.6k
  state->get_buffer = get_buffer;
461
13.6k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
13.6k
  if (l > 16) {
466
52
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
52
    return 0;                   /* fake a zero as the safest result */
468
52
  }
469
470
13.6k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
13.6k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
198k
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
198k
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
0
{
514
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
0
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
0
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
0
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
0
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
0
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
0
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
0
  if (cinfo->unread_marker == 0)
539
0
    entropy->pub.insufficient_data = FALSE;
540
541
0
  return TRUE;
542
0
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
12.2k
{
554
12.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
12.2k
  BITREAD_STATE_VARS;
556
12.2k
  int blkn;
557
12.2k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
12.2k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
12.2k
  state = entropy->saved;
563
564
47.3k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
35.1k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
35.1k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
35.1k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
35.1k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
35.1k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
35.1k
    if (s) {
575
8.28k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
8.28k
      r = GET_BITS(s);
577
8.28k
      s = HUFF_EXTEND(r, s);
578
8.28k
    }
579
580
35.1k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
35.0k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
35.0k
      s += state.last_dc_val[ci];
592
35.0k
      state.last_dc_val[ci] = s;
593
35.0k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
35.0k
        (*block)[0] = (JCOEF)s;
596
35.0k
      }
597
35.0k
    }
598
599
35.1k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
108k
      for (k = 1; k < DCTSIZE2; k++) {
604
105k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
105k
        r = s >> 4;
607
105k
        s &= 15;
608
609
105k
        if (s) {
610
73.1k
          k += r;
611
73.1k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
73.1k
          r = GET_BITS(s);
613
73.1k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
73.1k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
73.1k
        } else {
620
32.8k
          if (r != 15)
621
32.1k
            break;
622
649
          k += 15;
623
649
        }
624
105k
      }
625
626
35.0k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
80
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
80
    }
647
35.1k
  }
648
649
  /* Completed MCU, so update state */
650
12.2k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
12.2k
  entropy->saved = state;
652
12.2k
  return TRUE;
653
12.2k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
2.52k
{
665
2.52k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
2.52k
  BITREAD_STATE_VARS;
667
2.52k
  JOCTET *buffer;
668
2.52k
  int blkn;
669
2.52k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
2.52k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
2.52k
  buffer = (JOCTET *)br_state.next_input_byte;
675
2.52k
  state = entropy->saved;
676
677
13.4k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
10.9k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
10.9k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
10.9k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
10.9k
    register int s, k, r, l;
682
683
10.9k
    HUFF_DECODE_FAST(s, l, dctbl);
684
10.9k
    if (s) {
685
3.25k
      FILL_BIT_BUFFER_FAST
686
3.25k
      r = GET_BITS(s);
687
3.25k
      s = HUFF_EXTEND(r, s);
688
3.25k
    }
689
690
10.9k
    if (entropy->dc_needed[blkn]) {
691
10.9k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
10.9k
      s += state.last_dc_val[ci];
696
10.9k
      state.last_dc_val[ci] = s;
697
10.9k
      if (block)
698
10.9k
        (*block)[0] = (JCOEF)s;
699
10.9k
    }
700
701
10.9k
    if (entropy->ac_needed[blkn] && block) {
702
703
124k
      for (k = 1; k < DCTSIZE2; k++) {
704
123k
        HUFF_DECODE_FAST(s, l, actbl);
705
123k
        r = s >> 4;
706
123k
        s &= 15;
707
708
123k
        if (s) {
709
114k
          k += r;
710
114k
          FILL_BIT_BUFFER_FAST
711
114k
          r = GET_BITS(s);
712
114k
          s = HUFF_EXTEND(r, s);
713
114k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
114k
        } else {
715
9.06k
          if (r != 15) break;
716
14
          k += 15;
717
14
        }
718
123k
      }
719
720
10.9k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
10.9k
  }
738
739
2.52k
  if (cinfo->unread_marker != 0) {
740
406
    cinfo->unread_marker = 0;
741
406
    return FALSE;
742
406
  }
743
744
2.12k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
2.12k
  br_state.next_input_byte = buffer;
746
2.12k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
2.12k
  entropy->saved = state;
748
2.12k
  return TRUE;
749
2.52k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
14.3k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
14.3k
{
772
14.3k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
14.3k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
14.3k
  if (cinfo->restart_interval) {
777
0
    if (entropy->restarts_to_go == 0)
778
0
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
0
    usefast = 0;
781
0
  }
782
783
14.3k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
14.3k
      cinfo->unread_marker != 0)
785
11.8k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
14.3k
  if (!entropy->pub.insufficient_data) {
791
792
14.3k
    if (usefast) {
793
2.52k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
11.8k
    } else {
795
12.2k
use_slow:
796
12.2k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
12.2k
    }
798
799
14.3k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
14.3k
  if (cinfo->restart_interval)
803
0
    entropy->restarts_to_go--;
804
805
14.3k
  return TRUE;
806
14.3k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
780
{
816
780
  huff_entropy_ptr entropy;
817
780
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
780
  std_huff_tables((j_common_ptr)cinfo);
824
825
780
  entropy = (huff_entropy_ptr)
826
780
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
780
                                sizeof(huff_entropy_decoder));
828
780
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
780
  entropy->pub.start_pass = start_pass_huff_decoder;
830
780
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
3.90k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.12k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.12k
  }
836
780
}