Coverage Report

Created: 2024-09-08 06:06

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
958
{
81
958
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
958
  int ci, blkn, dctbl, actbl;
83
958
  d_derived_tbl **pdtbl;
84
958
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
958
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
958
      cinfo->Ah != 0 || cinfo->Al != 0)
92
17
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
3.71k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
2.76k
    compptr = cinfo->cur_comp_info[ci];
96
2.76k
    dctbl = compptr->dc_tbl_no;
97
2.76k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
2.76k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
2.76k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
2.76k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
2.76k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
2.76k
    entropy->saved.last_dc_val[ci] = 0;
106
2.76k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
5.49k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
4.54k
    ci = cinfo->MCU_membership[blkn];
111
4.54k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
4.54k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
4.54k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
4.54k
    if (compptr->component_needed) {
117
4.54k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
4.54k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
4.54k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
4.54k
  }
124
125
  /* Initialize bitread state variables */
126
958
  entropy->bitstate.bits_left = 0;
127
958
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
958
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
958
  entropy->restarts_to_go = cinfo->restart_interval;
132
958
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
10.9k
{
146
10.9k
  JHUFF_TBL *htbl;
147
10.9k
  d_derived_tbl *dtbl;
148
10.9k
  int p, i, l, si, numsymbols;
149
10.9k
  int lookbits, ctr;
150
10.9k
  char huffsize[257];
151
10.9k
  unsigned int huffcode[257];
152
10.9k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
10.9k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
10.9k
  htbl =
162
10.9k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
10.9k
  if (htbl == NULL)
164
2
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
10.9k
  if (*pdtbl == NULL)
168
4.98k
    *pdtbl = (d_derived_tbl *)
169
4.98k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
4.98k
                                  sizeof(d_derived_tbl));
171
10.9k
  dtbl = *pdtbl;
172
10.9k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
10.9k
  p = 0;
177
186k
  for (l = 1; l <= 16; l++) {
178
175k
    i = (int)htbl->bits[l];
179
175k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
731k
    while (i--)
182
555k
      huffsize[p++] = (char)l;
183
175k
  }
184
10.9k
  huffsize[p] = 0;
185
10.9k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
10.9k
  code = 0;
191
10.9k
  si = huffsize[0];
192
10.9k
  p = 0;
193
115k
  while (huffsize[p]) {
194
660k
    while (((int)huffsize[p]) == si) {
195
555k
      huffcode[p++] = code;
196
555k
      code++;
197
555k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
104k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
4
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
104k
    code <<= 1;
204
104k
    si++;
205
104k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
10.9k
  p = 0;
210
186k
  for (l = 1; l <= 16; l++) {
211
175k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
98.3k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
98.3k
      p += htbl->bits[l];
217
98.3k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
98.3k
    } else {
219
77.0k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
77.0k
    }
221
175k
  }
222
10.9k
  dtbl->valoffset[17] = 0;
223
10.9k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
2.81M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
2.80M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
10.9k
  p = 0;
236
98.6k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
247k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
160k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.90M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.74M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.74M
        lookbits++;
244
2.74M
      }
245
160k
    }
246
87.6k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
10.9k
  if (isDC) {
255
55.3k
    for (i = 0; i < numsymbols; i++) {
256
50.1k
      int sym = htbl->huffval[i];
257
50.1k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
12
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
50.1k
    }
260
5.18k
  }
261
10.9k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
14.5M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
1.79M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
1.79M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
1.79M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
1.79M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
1.79M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
14.5M
    while (bits_left < MIN_GET_BITS) {
303
12.7M
      register int c;
304
305
      /* Attempt to read a byte */
306
12.7M
      if (bytes_in_buffer == 0) {
307
89
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
89
        next_input_byte = cinfo->src->next_input_byte;
310
89
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
89
      }
312
12.7M
      bytes_in_buffer--;
313
12.7M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
12.7M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
78.9k
        do {
323
78.9k
          if (bytes_in_buffer == 0) {
324
0
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
0
            next_input_byte = cinfo->src->next_input_byte;
327
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
0
          }
329
78.9k
          bytes_in_buffer--;
330
78.9k
          c = *next_input_byte++;
331
78.9k
        } while (c == 0xFF);
332
333
73.4k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
68.3k
          c = 0xFF;
336
68.3k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
5.12k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
5.12k
          goto no_more_bytes;
348
5.12k
        }
349
73.4k
      }
350
351
      /* OK, load c into get_buffer */
352
12.7M
      get_buffer = (get_buffer << 8) | c;
353
12.7M
      bits_left += 8;
354
12.7M
    } /* end while */
355
1.79M
  } else {
356
10.1k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
10.1k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
557
      if (!cinfo->entropy->insufficient_data) {
368
557
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
557
        cinfo->entropy->insufficient_data = TRUE;
370
557
      }
371
      /* Fill the buffer with zero bits */
372
557
      get_buffer <<= MIN_GET_BITS - bits_left;
373
557
      bits_left = MIN_GET_BITS;
374
557
    }
375
10.1k
  }
376
377
  /* Unload the local registers */
378
1.79M
  state->next_input_byte = next_input_byte;
379
1.79M
  state->bytes_in_buffer = bytes_in_buffer;
380
1.79M
  state->get_buffer = get_buffer;
381
1.79M
  state->bits_left = bits_left;
382
383
1.79M
  return TRUE;
384
1.79M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
4.10M
#define GET_BYTE { \
392
4.10M
  register int c0, c1; \
393
4.10M
  c0 = *buffer++; \
394
4.10M
  c1 = *buffer; \
395
4.10M
  /* Pre-execute most common case */ \
396
4.10M
  get_buffer = (get_buffer << 8) | c0; \
397
4.10M
  bits_left += 8; \
398
4.10M
  if (c0 == 0xFF) { \
399
50.7k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
50.7k
    buffer++; \
401
50.7k
    if (c1 != 0) { \
402
14.2k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
14.2k
      cinfo->unread_marker = c1; \
404
14.2k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
14.2k
      buffer -= 2; \
406
14.2k
      get_buffer &= ~0xFF; \
407
14.2k
    } \
408
50.7k
  } \
409
4.10M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
10.9M
  if (bits_left <= 16) { \
416
683k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
683k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
270k
{
440
270k
  register int l = min_bits;
441
270k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
270k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
270k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
604k
  while (code > htbl->maxcode[l]) {
453
333k
    code <<= 1;
454
333k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
333k
    code |= GET_BITS(1);
456
333k
    l++;
457
333k
  }
458
459
  /* Unload the local registers */
460
270k
  state->get_buffer = get_buffer;
461
270k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
270k
  if (l > 16) {
466
190
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
190
    return 0;                   /* fake a zero as the safest result */
468
190
  }
469
470
269k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
270k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
7.08M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
7.08M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.25k
{
514
1.25k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.25k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.25k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.25k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.25k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
4.47k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
3.21k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.25k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.25k
  if (cinfo->unread_marker == 0)
539
1.21k
    entropy->pub.insufficient_data = FALSE;
540
541
1.25k
  return TRUE;
542
1.25k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
94.1k
{
554
94.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
94.1k
  BITREAD_STATE_VARS;
556
94.1k
  int blkn;
557
94.1k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
94.1k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
94.1k
  state = entropy->saved;
563
564
505k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
411k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
411k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
411k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
411k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
411k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
411k
    if (s) {
575
159k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
159k
      r = GET_BITS(s);
577
159k
      s = HUFF_EXTEND(r, s);
578
159k
    }
579
580
411k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
410k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
410k
      s += state.last_dc_val[ci];
592
410k
      state.last_dc_val[ci] = s;
593
410k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
410k
        (*block)[0] = (JCOEF)s;
596
410k
      }
597
410k
    }
598
599
411k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
2.86M
      for (k = 1; k < DCTSIZE2; k++) {
604
2.86M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
2.86M
        r = s >> 4;
607
2.86M
        s &= 15;
608
609
2.86M
        if (s) {
610
2.43M
          k += r;
611
2.43M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.43M
          r = GET_BITS(s);
613
2.43M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.43M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.43M
        } else {
620
421k
          if (r != 15)
621
404k
            break;
622
17.2k
          k += 15;
623
17.2k
        }
624
2.86M
      }
625
626
410k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
169
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
169
    }
647
411k
  }
648
649
  /* Completed MCU, so update state */
650
94.0k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
94.0k
  entropy->saved = state;
652
94.0k
  return TRUE;
653
94.1k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
219k
{
665
219k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
219k
  BITREAD_STATE_VARS;
667
219k
  JOCTET *buffer;
668
219k
  int blkn;
669
219k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
219k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
219k
  buffer = (JOCTET *)br_state.next_input_byte;
675
219k
  state = entropy->saved;
676
677
1.44M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
1.22M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
1.22M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
1.22M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
1.22M
    register int s, k, r, l;
682
683
1.22M
    HUFF_DECODE_FAST(s, l, dctbl);
684
1.22M
    if (s) {
685
481k
      FILL_BIT_BUFFER_FAST
686
481k
      r = GET_BITS(s);
687
481k
      s = HUFF_EXTEND(r, s);
688
481k
    }
689
690
1.22M
    if (entropy->dc_needed[blkn]) {
691
1.22M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
1.22M
      s += state.last_dc_val[ci];
696
1.22M
      state.last_dc_val[ci] = s;
697
1.22M
      if (block)
698
1.22M
        (*block)[0] = (JCOEF)s;
699
1.22M
    }
700
701
1.22M
    if (entropy->ac_needed[blkn] && block) {
702
703
5.23M
      for (k = 1; k < DCTSIZE2; k++) {
704
5.22M
        HUFF_DECODE_FAST(s, l, actbl);
705
5.22M
        r = s >> 4;
706
5.22M
        s &= 15;
707
708
5.22M
        if (s) {
709
4.00M
          k += r;
710
4.00M
          FILL_BIT_BUFFER_FAST
711
4.00M
          r = GET_BITS(s);
712
4.00M
          s = HUFF_EXTEND(r, s);
713
4.00M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
4.00M
        } else {
715
1.21M
          if (r != 15) break;
716
2.48k
          k += 15;
717
2.48k
        }
718
5.22M
      }
719
720
1.22M
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
1.22M
  }
738
739
219k
  if (cinfo->unread_marker != 0) {
740
232
    cinfo->unread_marker = 0;
741
232
    return FALSE;
742
232
  }
743
744
219k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
219k
  br_state.next_input_byte = buffer;
746
219k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
219k
  entropy->saved = state;
748
219k
  return TRUE;
749
219k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
313k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
313k
{
772
313k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
313k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
313k
  if (cinfo->restart_interval) {
777
33.5k
    if (entropy->restarts_to_go == 0)
778
1.25k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
33.5k
    usefast = 0;
781
33.5k
  }
782
783
313k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
313k
      cinfo->unread_marker != 0)
785
64.5k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
313k
  if (!entropy->pub.insufficient_data) {
791
792
313k
    if (usefast) {
793
219k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
219k
    } else {
795
94.1k
use_slow:
796
94.1k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
94.1k
    }
798
799
313k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
313k
  if (cinfo->restart_interval)
803
33.4k
    entropy->restarts_to_go--;
804
805
313k
  return TRUE;
806
313k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
961
{
816
961
  huff_entropy_ptr entropy;
817
961
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
961
  std_huff_tables((j_common_ptr)cinfo);
824
825
961
  entropy = (huff_entropy_ptr)
826
961
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
961
                                sizeof(huff_entropy_decoder));
828
961
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
961
  entropy->pub.start_pass = start_pass_huff_decoder;
830
961
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
4.80k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.84k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.84k
  }
836
961
}