Coverage Report

Created: 2024-09-08 06:05

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
491
{
81
491
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
491
  int ci, blkn, dctbl, actbl;
83
491
  d_derived_tbl **pdtbl;
84
491
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
491
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
491
      cinfo->Ah != 0 || cinfo->Al != 0)
92
3
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
1.75k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
1.26k
    compptr = cinfo->cur_comp_info[ci];
96
1.26k
    dctbl = compptr->dc_tbl_no;
97
1.26k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
1.26k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
1.26k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
1.26k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
1.26k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
1.26k
    entropy->saved.last_dc_val[ci] = 0;
106
1.26k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
2.19k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
1.70k
    ci = cinfo->MCU_membership[blkn];
111
1.70k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
1.70k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
1.70k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
1.70k
    if (compptr->component_needed) {
117
1.70k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
1.70k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
1.70k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
1.70k
  }
124
125
  /* Initialize bitread state variables */
126
491
  entropy->bitstate.bits_left = 0;
127
491
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
491
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
491
  entropy->restarts_to_go = cinfo->restart_interval;
132
491
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
2.52k
{
146
2.52k
  JHUFF_TBL *htbl;
147
2.52k
  d_derived_tbl *dtbl;
148
2.52k
  int p, i, l, si, numsymbols;
149
2.52k
  int lookbits, ctr;
150
2.52k
  char huffsize[257];
151
2.52k
  unsigned int huffcode[257];
152
2.52k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
2.52k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
4
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
2.52k
  htbl =
162
2.52k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
2.52k
  if (htbl == NULL)
164
1
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
2.52k
  if (*pdtbl == NULL)
168
1.27k
    *pdtbl = (d_derived_tbl *)
169
1.27k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
1.27k
                                  sizeof(d_derived_tbl));
171
2.52k
  dtbl = *pdtbl;
172
2.52k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
2.52k
  p = 0;
177
42.9k
  for (l = 1; l <= 16; l++) {
178
40.3k
    i = (int)htbl->bits[l];
179
40.3k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
259k
    while (i--)
182
218k
      huffsize[p++] = (char)l;
183
40.3k
  }
184
2.52k
  huffsize[p] = 0;
185
2.52k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
2.52k
  code = 0;
191
2.52k
  si = huffsize[0];
192
2.52k
  p = 0;
193
32.1k
  while (huffsize[p]) {
194
248k
    while (((int)huffsize[p]) == si) {
195
218k
      huffcode[p++] = code;
196
218k
      code++;
197
218k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
29.5k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
29.5k
    code <<= 1;
204
29.5k
    si++;
205
29.5k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
2.52k
  p = 0;
210
42.9k
  for (l = 1; l <= 16; l++) {
211
40.3k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
27.3k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
27.3k
      p += htbl->bits[l];
217
27.3k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
27.3k
    } else {
219
13.0k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
13.0k
    }
221
40.3k
  }
222
2.52k
  dtbl->valoffset[17] = 0;
223
2.52k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
648k
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
646k
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
2.52k
  p = 0;
236
22.7k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
56.7k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
36.5k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
674k
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
638k
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
638k
        lookbits++;
244
638k
      }
245
36.5k
    }
246
20.1k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
2.52k
  if (isDC) {
255
16.4k
    for (i = 0; i < numsymbols; i++) {
256
15.1k
      int sym = htbl->huffval[i];
257
15.1k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
6
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
15.1k
    }
260
1.26k
  }
261
2.52k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
57.9k
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
7.53k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
7.53k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
7.53k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
7.53k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
7.53k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
57.8k
    while (bits_left < MIN_GET_BITS) {
303
51.0k
      register int c;
304
305
      /* Attempt to read a byte */
306
51.0k
      if (bytes_in_buffer == 0) {
307
7
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
7
        next_input_byte = cinfo->src->next_input_byte;
310
7
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
7
      }
312
51.0k
      bytes_in_buffer--;
313
51.0k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
51.0k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
6.52k
        do {
323
6.52k
          if (bytes_in_buffer == 0) {
324
0
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
0
            next_input_byte = cinfo->src->next_input_byte;
327
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
0
          }
329
6.52k
          bytes_in_buffer--;
330
6.52k
          c = *next_input_byte++;
331
6.52k
        } while (c == 0xFF);
332
333
4.62k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
4.19k
          c = 0xFF;
336
4.19k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
431
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
431
          goto no_more_bytes;
348
431
        }
349
4.62k
      }
350
351
      /* OK, load c into get_buffer */
352
50.6k
      get_buffer = (get_buffer << 8) | c;
353
50.6k
      bits_left += 8;
354
50.6k
    } /* end while */
355
7.20k
  } else {
356
761
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
761
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
84
      if (!cinfo->entropy->insufficient_data) {
368
84
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
84
        cinfo->entropy->insufficient_data = TRUE;
370
84
      }
371
      /* Fill the buffer with zero bits */
372
84
      get_buffer <<= MIN_GET_BITS - bits_left;
373
84
      bits_left = MIN_GET_BITS;
374
84
    }
375
761
  }
376
377
  /* Unload the local registers */
378
7.53k
  state->next_input_byte = next_input_byte;
379
7.53k
  state->bytes_in_buffer = bytes_in_buffer;
380
7.53k
  state->get_buffer = get_buffer;
381
7.53k
  state->bits_left = bits_left;
382
383
7.53k
  return TRUE;
384
7.53k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
10.1k
#define GET_BYTE { \
392
10.1k
  register int c0, c1; \
393
10.1k
  c0 = *buffer++; \
394
10.1k
  c1 = *buffer; \
395
10.1k
  /* Pre-execute most common case */ \
396
10.1k
  get_buffer = (get_buffer << 8) | c0; \
397
10.1k
  bits_left += 8; \
398
10.1k
  if (c0 == 0xFF) { \
399
836
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
836
    buffer++; \
401
836
    if (c1 != 0) { \
402
799
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
799
      cinfo->unread_marker = c1; \
404
799
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
799
      buffer -= 2; \
406
799
      get_buffer &= ~0xFF; \
407
799
    } \
408
836
  } \
409
10.1k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
37.3k
  if (bits_left <= 16) { \
416
1.69k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
1.69k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
8.52k
{
440
8.52k
  register int l = min_bits;
441
8.52k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
8.52k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
8.52k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
40.9k
  while (code > htbl->maxcode[l]) {
453
32.4k
    code <<= 1;
454
32.4k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
32.4k
    code |= GET_BITS(1);
456
32.4k
    l++;
457
32.4k
  }
458
459
  /* Unload the local registers */
460
8.52k
  state->get_buffer = get_buffer;
461
8.52k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
8.52k
  if (l > 16) {
466
14
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
14
    return 0;                   /* fake a zero as the safest result */
468
14
  }
469
470
8.51k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
8.52k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
42.5k
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
42.5k
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
0
{
514
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
0
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
0
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
0
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
0
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
0
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
0
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
0
  if (cinfo->unread_marker == 0)
539
0
    entropy->pub.insufficient_data = FALSE;
540
541
0
  return TRUE;
542
0
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
9.84k
{
554
9.84k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
9.84k
  BITREAD_STATE_VARS;
556
9.84k
  int blkn;
557
9.84k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
9.84k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
9.84k
  state = entropy->saved;
563
564
37.3k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
27.4k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
27.4k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
27.4k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
27.4k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
27.4k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
27.4k
    if (s) {
575
6.00k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
6.00k
      r = GET_BITS(s);
577
6.00k
      s = HUFF_EXTEND(r, s);
578
6.00k
    }
579
580
27.4k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
27.4k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
27.4k
      s += state.last_dc_val[ci];
592
27.4k
      state.last_dc_val[ci] = s;
593
27.4k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
27.4k
        (*block)[0] = (JCOEF)s;
596
27.4k
      }
597
27.4k
    }
598
599
27.4k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
45.6k
      for (k = 1; k < DCTSIZE2; k++) {
604
45.2k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
45.2k
        r = s >> 4;
607
45.2k
        s &= 15;
608
609
45.2k
        if (s) {
610
18.1k
          k += r;
611
18.1k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
18.1k
          r = GET_BITS(s);
613
18.1k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
18.1k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
27.1k
        } else {
620
27.1k
          if (r != 15)
621
27.0k
            break;
622
69
          k += 15;
623
69
        }
624
45.2k
      }
625
626
27.4k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
25
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
25
    }
647
27.4k
  }
648
649
  /* Completed MCU, so update state */
650
9.83k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
9.83k
  entropy->saved = state;
652
9.83k
  return TRUE;
653
9.84k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
390
{
665
390
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
390
  BITREAD_STATE_VARS;
667
390
  JOCTET *buffer;
668
390
  int blkn;
669
390
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
390
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
390
  buffer = (JOCTET *)br_state.next_input_byte;
675
390
  state = entropy->saved;
676
677
1.05k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
666
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
666
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
666
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
666
    register int s, k, r, l;
682
683
666
    HUFF_DECODE_FAST(s, l, dctbl);
684
666
    if (s) {
685
432
      FILL_BIT_BUFFER_FAST
686
432
      r = GET_BITS(s);
687
432
      s = HUFF_EXTEND(r, s);
688
432
    }
689
690
666
    if (entropy->dc_needed[blkn]) {
691
666
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
666
      s += state.last_dc_val[ci];
696
666
      state.last_dc_val[ci] = s;
697
666
      if (block)
698
666
        (*block)[0] = (JCOEF)s;
699
666
    }
700
701
666
    if (entropy->ac_needed[blkn] && block) {
702
703
18.6k
      for (k = 1; k < DCTSIZE2; k++) {
704
18.2k
        HUFF_DECODE_FAST(s, l, actbl);
705
18.2k
        r = s >> 4;
706
18.2k
        s &= 15;
707
708
18.2k
        if (s) {
709
17.9k
          k += r;
710
17.9k
          FILL_BIT_BUFFER_FAST
711
17.9k
          r = GET_BITS(s);
712
17.9k
          s = HUFF_EXTEND(r, s);
713
17.9k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
17.9k
        } else {
715
287
          if (r != 15) break;
716
0
          k += 15;
717
0
        }
718
18.2k
      }
719
720
666
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
666
  }
738
739
390
  if (cinfo->unread_marker != 0) {
740
15
    cinfo->unread_marker = 0;
741
15
    return FALSE;
742
15
  }
743
744
375
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
375
  br_state.next_input_byte = buffer;
746
375
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
375
  entropy->saved = state;
748
375
  return TRUE;
749
390
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
10.2k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
10.2k
{
772
10.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
10.2k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
10.2k
  if (cinfo->restart_interval) {
777
0
    if (entropy->restarts_to_go == 0)
778
0
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
0
    usefast = 0;
781
0
  }
782
783
10.2k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
10.2k
      cinfo->unread_marker != 0)
785
9.82k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
10.2k
  if (!entropy->pub.insufficient_data) {
791
792
10.2k
    if (usefast) {
793
390
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
9.82k
    } else {
795
9.84k
use_slow:
796
9.84k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
9.84k
    }
798
799
10.2k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
10.2k
  if (cinfo->restart_interval)
803
0
    entropy->restarts_to_go--;
804
805
10.2k
  return TRUE;
806
10.2k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
497
{
816
497
  huff_entropy_ptr entropy;
817
497
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
497
  std_huff_tables((j_common_ptr)cinfo);
824
825
497
  entropy = (huff_entropy_ptr)
826
497
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
497
                                sizeof(huff_entropy_decoder));
828
497
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
497
  entropy->pub.start_pass = start_pass_huff_decoder;
830
497
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
2.48k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
1.98k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
1.98k
  }
836
497
}