Coverage Report

Created: 2025-06-22 06:32

/src/libjpeg-turbo/src/jcdctmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcdctmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9
 * Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the forward-DCT management logic.
14
 * This code selects a particular DCT implementation to be used,
15
 * and it performs related housekeeping chores including coefficient
16
 * quantization.
17
 */
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h"               /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data,
32
                                     JDIMENSION start_col,
33
                                     DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data,
35
                                           JDIMENSION start_col,
36
                                           FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
                                     DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
                                           FAST_FLOAT *divisors,
42
                                           FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
  struct jpeg_forward_dct pub;  /* public fields */
48
49
  /* Pointer to the DCT routine actually in use */
50
  forward_DCT_method_ptr dct;
51
  convsamp_method_ptr convsamp;
52
  quantize_method_ptr quantize;
53
54
  /* The actual post-DCT divisors --- not identical to the quant table
55
   * entries, because of scaling (especially for an unnormalized DCT).
56
   * Each table is given in normal array order.
57
   */
58
  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
  /* work area for FDCT subroutine */
61
  DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
  /* Same as above for the floating-point case. */
65
  float_DCT_method_ptr float_dct;
66
  float_convsamp_method_ptr float_convsamp;
67
  float_quantize_method_ptr float_quantize;
68
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
  FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
 * Find the highest bit in an integer through binary search.
80
 */
81
82
LOCAL(int)
83
flss(UINT16 val)
84
0
{
85
0
  int bit;
86
87
0
  bit = 16;
88
89
0
  if (!val)
90
0
    return 0;
91
92
0
  if (!(val & 0xff00)) {
93
0
    bit -= 8;
94
0
    val <<= 8;
95
0
  }
96
0
  if (!(val & 0xf000)) {
97
0
    bit -= 4;
98
0
    val <<= 4;
99
0
  }
100
0
  if (!(val & 0xc000)) {
101
0
    bit -= 2;
102
0
    val <<= 2;
103
0
  }
104
0
  if (!(val & 0x8000)) {
105
0
    bit -= 1;
106
0
    val <<= 1;
107
0
  }
108
109
0
  return bit;
110
0
}
111
112
113
/*
114
 * Compute values to do a division using reciprocal.
115
 *
116
 * This implementation is based on an algorithm described in
117
 *   "Optimizing subroutines in assembly language:
118
 *   An optimization guide for x86 platforms" (https://agner.org/optimize).
119
 * More information about the basic algorithm can be found in
120
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
 *
122
 * The basic idea is to replace x/d by x * d^-1. In order to store
123
 * d^-1 with enough precision we shift it left a few places. It turns
124
 * out that this algoright gives just enough precision, and also fits
125
 * into DCTELEM:
126
 *
127
 *   b = (the number of significant bits in divisor) - 1
128
 *   r = (word size) + b
129
 *   f = 2^r / divisor
130
 *
131
 * f will not be an integer for most cases, so we need to compensate
132
 * for the rounding error introduced:
133
 *
134
 *   no fractional part:
135
 *
136
 *       result = input >> r
137
 *
138
 *   fractional part of f < 0.5:
139
 *
140
 *       round f down to nearest integer
141
 *       result = ((input + 1) * f) >> r
142
 *
143
 *   fractional part of f > 0.5:
144
 *
145
 *       round f up to nearest integer
146
 *       result = (input * f) >> r
147
 *
148
 * This is the original algorithm that gives truncated results. But we
149
 * want properly rounded results, so we replace "input" with
150
 * "input + divisor/2".
151
 *
152
 * In order to allow SIMD implementations we also tweak the values to
153
 * allow the same calculation to be made at all times:
154
 *
155
 *   dctbl[0] = f rounded to nearest integer
156
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
 *   dctbl[2] = 1 << ((word size) * 2 - r)
158
 *   dctbl[3] = r - (word size)
159
 *
160
 * dctbl[2] is for stupid instruction sets where the shift operation
161
 * isn't member wise (e.g. MMX).
162
 *
163
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
 * is that most SIMD implementations have a "multiply and store top
165
 * half" operation.
166
 *
167
 * Lastly, we store each of the values in their own table instead
168
 * of in a consecutive manner, yet again in order to allow SIMD
169
 * routines.
170
 */
171
172
LOCAL(int)
173
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
174
0
{
175
0
  UDCTELEM2 fq, fr;
176
0
  UDCTELEM c;
177
0
  int b, r;
178
179
0
  if (divisor == 1) {
180
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
     * values will cause the C quantization algorithm to act like the
182
     * identity function.  Since only the C quantization algorithm is used in
183
     * these cases, the scale value is irrelevant.
184
     */
185
0
    dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */
186
0
    dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */
187
0
    dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */
188
0
    dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */
189
0
    return 0;
190
0
  }
191
192
0
  b = flss(divisor) - 1;
193
0
  r  = sizeof(DCTELEM) * 8 + b;
194
195
0
  fq = ((UDCTELEM2)1 << r) / divisor;
196
0
  fr = ((UDCTELEM2)1 << r) % divisor;
197
198
0
  c = divisor / 2;                      /* for rounding */
199
200
0
  if (fr == 0) {                        /* divisor is power of two */
201
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202
0
    fq >>= 1;
203
0
    r--;
204
0
  } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */
205
0
    c++;
206
0
  } else {                              /* fractional part is > 0.5 */
207
0
    fq++;
208
0
  }
209
210
0
  dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */
211
0
  dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */
212
0
#ifdef WITH_SIMD
213
0
  dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
214
#else
215
  dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
0
  dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
218
219
0
  if (r <= 16) return 0;
220
0
  else return 1;
221
0
}
222
223
#endif
224
225
226
/*
227
 * Initialize for a processing pass.
228
 * Verify that all referenced Q-tables are present, and set up
229
 * the divisor table for each one.
230
 * In the current implementation, DCT of all components is done during
231
 * the first pass, even if only some components will be output in the
232
 * first scan.  Hence all components should be examined here.
233
 */
234
235
METHODDEF(void)
236
start_pass_fdctmgr(j_compress_ptr cinfo)
237
0
{
238
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
0
  int ci, qtblno, i;
240
0
  jpeg_component_info *compptr;
241
0
  JQUANT_TBL *qtbl;
242
0
  DCTELEM *dtbl;
243
244
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
0
       ci++, compptr++) {
246
0
    qtblno = compptr->quant_tbl_no;
247
    /* Make sure specified quantization table is present */
248
0
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
0
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
0
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
    /* Compute divisors for this quant table */
253
    /* We may do this more than once for same table, but it's not a big deal */
254
0
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
0
    case JDCT_ISLOW:
257
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
       * coefficients multiplied by 8 (to counteract scaling).
259
       */
260
0
      if (fdct->divisors[qtblno] == NULL) {
261
0
        fdct->divisors[qtblno] = (DCTELEM *)
262
0
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
0
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
0
      }
265
0
      dtbl = fdct->divisors[qtblno];
266
0
      for (i = 0; i < DCTSIZE2; i++) {
267
#if BITS_IN_JSAMPLE == 8
268
#ifdef WITH_SIMD
269
0
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
270
0
            fdct->quantize == jsimd_quantize)
271
0
          fdct->quantize = quantize;
272
#else
273
        compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
274
#endif
275
#else
276
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
277
#endif
278
0
      }
279
0
      break;
280
0
#endif
281
0
#ifdef DCT_IFAST_SUPPORTED
282
0
    case JDCT_IFAST:
283
0
      {
284
        /* For AA&N IDCT method, divisors are equal to quantization
285
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
286
         *   scalefactor[0] = 1
287
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
288
         * We apply a further scale factor of 8.
289
         */
290
0
#define CONST_BITS  14
291
0
        static const INT16 aanscales[DCTSIZE2] = {
292
          /* precomputed values scaled up by 14 bits */
293
0
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
0
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
295
0
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
296
0
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
297
0
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
298
0
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
299
0
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
300
0
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
301
0
        };
302
0
        SHIFT_TEMPS
303
304
0
        if (fdct->divisors[qtblno] == NULL) {
305
0
          fdct->divisors[qtblno] = (DCTELEM *)
306
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
307
0
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
308
0
        }
309
0
        dtbl = fdct->divisors[qtblno];
310
0
        for (i = 0; i < DCTSIZE2; i++) {
311
#if BITS_IN_JSAMPLE == 8
312
#ifdef WITH_SIMD
313
0
          if (!compute_reciprocal(
314
0
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
315
0
                                      (JLONG)aanscales[i]),
316
0
                        CONST_BITS - 3), &dtbl[i]) &&
317
0
              fdct->quantize == jsimd_quantize)
318
0
            fdct->quantize = quantize;
319
#else
320
          compute_reciprocal(
321
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
322
                                  (JLONG)aanscales[i]),
323
                    CONST_BITS-3), &dtbl[i]);
324
#endif
325
#else
326
          dtbl[i] = (DCTELEM)
327
0
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
328
                                  (JLONG)aanscales[i]),
329
                    CONST_BITS - 3);
330
#endif
331
0
        }
332
0
      }
333
0
      break;
334
0
#endif
335
0
#ifdef DCT_FLOAT_SUPPORTED
336
0
    case JDCT_FLOAT:
337
0
      {
338
        /* For float AA&N IDCT method, divisors are equal to quantization
339
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
340
         *   scalefactor[0] = 1
341
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
342
         * We apply a further scale factor of 8.
343
         * What's actually stored is 1/divisor so that the inner loop can
344
         * use a multiplication rather than a division.
345
         */
346
0
        FAST_FLOAT *fdtbl;
347
0
        int row, col;
348
0
        static const double aanscalefactor[DCTSIZE] = {
349
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
350
0
          1.0, 0.785694958, 0.541196100, 0.275899379
351
0
        };
352
353
0
        if (fdct->float_divisors[qtblno] == NULL) {
354
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
355
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
356
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
357
0
        }
358
0
        fdtbl = fdct->float_divisors[qtblno];
359
0
        i = 0;
360
0
        for (row = 0; row < DCTSIZE; row++) {
361
0
          for (col = 0; col < DCTSIZE; col++) {
362
0
            fdtbl[i] = (FAST_FLOAT)
363
0
              (1.0 / (((double)qtbl->quantval[i] *
364
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
365
0
            i++;
366
0
          }
367
0
        }
368
0
      }
369
0
      break;
370
0
#endif
371
0
    default:
372
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
373
0
      break;
374
0
    }
375
0
  }
376
0
}
Unexecuted instantiation: jcdctmgr-8.c:start_pass_fdctmgr
Unexecuted instantiation: jcdctmgr-12.c:start_pass_fdctmgr
377
378
379
/*
380
 * Load data into workspace, applying unsigned->signed conversion.
381
 */
382
383
METHODDEF(void)
384
convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
385
0
{
386
0
  register DCTELEM *workspaceptr;
387
0
  register _JSAMPROW elemptr;
388
0
  register int elemr;
389
390
0
  workspaceptr = workspace;
391
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
392
0
    elemptr = sample_data[elemr] + start_col;
393
394
0
#if DCTSIZE == 8                /* unroll the inner loop */
395
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
396
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
397
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
398
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
399
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
400
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
401
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
402
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
403
#else
404
    {
405
      register int elemc;
406
      for (elemc = DCTSIZE; elemc > 0; elemc--)
407
        *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
408
    }
409
#endif
410
0
  }
411
0
}
Unexecuted instantiation: jcdctmgr-8.c:convsamp
Unexecuted instantiation: jcdctmgr-12.c:convsamp
412
413
414
/*
415
 * Quantize/descale the coefficients, and store into coef_blocks[].
416
 */
417
418
METHODDEF(void)
419
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
420
0
{
421
0
  int i;
422
0
  DCTELEM temp;
423
0
  JCOEFPTR output_ptr = coef_block;
424
425
#if BITS_IN_JSAMPLE == 8
426
427
  UDCTELEM recip, corr;
428
  int shift;
429
  UDCTELEM2 product;
430
431
0
  for (i = 0; i < DCTSIZE2; i++) {
432
0
    temp = workspace[i];
433
0
    recip = divisors[i + DCTSIZE2 * 0];
434
0
    corr =  divisors[i + DCTSIZE2 * 1];
435
0
    shift = divisors[i + DCTSIZE2 * 3];
436
437
0
    if (temp < 0) {
438
0
      temp = -temp;
439
0
      product = (UDCTELEM2)(temp + corr) * recip;
440
0
      product >>= shift + sizeof(DCTELEM) * 8;
441
0
      temp = (DCTELEM)product;
442
0
      temp = -temp;
443
0
    } else {
444
0
      product = (UDCTELEM2)(temp + corr) * recip;
445
0
      product >>= shift + sizeof(DCTELEM) * 8;
446
0
      temp = (DCTELEM)product;
447
0
    }
448
0
    output_ptr[i] = (JCOEF)temp;
449
0
  }
450
451
#else
452
453
  register DCTELEM qval;
454
455
0
  for (i = 0; i < DCTSIZE2; i++) {
456
0
    qval = divisors[i];
457
0
    temp = workspace[i];
458
    /* Divide the coefficient value by qval, ensuring proper rounding.
459
     * Since C does not specify the direction of rounding for negative
460
     * quotients, we have to force the dividend positive for portability.
461
     *
462
     * In most files, at least half of the output values will be zero
463
     * (at default quantization settings, more like three-quarters...)
464
     * so we should ensure that this case is fast.  On many machines,
465
     * a comparison is enough cheaper than a divide to make a special test
466
     * a win.  Since both inputs will be nonnegative, we need only test
467
     * for a < b to discover whether a/b is 0.
468
     * If your machine's division is fast enough, define FAST_DIVIDE.
469
     */
470
#ifdef FAST_DIVIDE
471
#define DIVIDE_BY(a, b)  a /= b
472
#else
473
0
#define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0
474
0
#endif
475
0
    if (temp < 0) {
476
0
      temp = -temp;
477
0
      temp += qval >> 1;        /* for rounding */
478
0
      DIVIDE_BY(temp, qval);
479
0
      temp = -temp;
480
0
    } else {
481
0
      temp += qval >> 1;        /* for rounding */
482
0
      DIVIDE_BY(temp, qval);
483
0
    }
484
0
    output_ptr[i] = (JCOEF)temp;
485
0
  }
486
487
#endif
488
489
0
}
Unexecuted instantiation: jcdctmgr-8.c:quantize
Unexecuted instantiation: jcdctmgr-12.c:quantize
490
491
492
/*
493
 * Perform forward DCT on one or more blocks of a component.
494
 *
495
 * The input samples are taken from the sample_data[] array starting at
496
 * position start_row/start_col, and moving to the right for any additional
497
 * blocks. The quantized coefficients are returned in coef_blocks[].
498
 */
499
500
METHODDEF(void)
501
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
502
            _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
503
            JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
504
/* This version is used for integer DCT implementations. */
505
0
{
506
  /* This routine is heavily used, so it's worth coding it tightly. */
507
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
508
0
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
509
0
  DCTELEM *workspace;
510
0
  JDIMENSION bi;
511
512
  /* Make sure the compiler doesn't look up these every pass */
513
0
  forward_DCT_method_ptr do_dct = fdct->dct;
514
0
  convsamp_method_ptr do_convsamp = fdct->convsamp;
515
0
  quantize_method_ptr do_quantize = fdct->quantize;
516
0
  workspace = fdct->workspace;
517
518
0
  sample_data += start_row;     /* fold in the vertical offset once */
519
520
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
521
    /* Load data into workspace, applying unsigned->signed conversion */
522
0
    (*do_convsamp) (sample_data, start_col, workspace);
523
524
    /* Perform the DCT */
525
0
    (*do_dct) (workspace);
526
527
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
528
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
529
0
  }
530
0
}
Unexecuted instantiation: jcdctmgr-8.c:forward_DCT
Unexecuted instantiation: jcdctmgr-12.c:forward_DCT
531
532
533
#ifdef DCT_FLOAT_SUPPORTED
534
535
METHODDEF(void)
536
convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col,
537
               FAST_FLOAT *workspace)
538
0
{
539
0
  register FAST_FLOAT *workspaceptr;
540
0
  register _JSAMPROW elemptr;
541
0
  register int elemr;
542
543
0
  workspaceptr = workspace;
544
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
545
0
    elemptr = sample_data[elemr] + start_col;
546
0
#if DCTSIZE == 8                /* unroll the inner loop */
547
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
548
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
549
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
550
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
551
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
552
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
553
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
554
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
555
#else
556
    {
557
      register int elemc;
558
      for (elemc = DCTSIZE; elemc > 0; elemc--)
559
        *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
560
    }
561
#endif
562
0
  }
563
0
}
Unexecuted instantiation: jcdctmgr-8.c:convsamp_float
Unexecuted instantiation: jcdctmgr-12.c:convsamp_float
564
565
566
METHODDEF(void)
567
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
568
               FAST_FLOAT *workspace)
569
0
{
570
0
  register FAST_FLOAT temp;
571
0
  register int i;
572
0
  register JCOEFPTR output_ptr = coef_block;
573
574
0
  for (i = 0; i < DCTSIZE2; i++) {
575
    /* Apply the quantization and scaling factor */
576
0
    temp = workspace[i] * divisors[i];
577
578
    /* Round to nearest integer.
579
     * Since C does not specify the direction of rounding for negative
580
     * quotients, we have to force the dividend positive for portability.
581
     * The maximum coefficient size is +-16K (for 12-bit data), so this
582
     * code should work for either 16-bit or 32-bit ints.
583
     */
584
0
    output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
585
0
  }
586
0
}
Unexecuted instantiation: jcdctmgr-8.c:quantize_float
Unexecuted instantiation: jcdctmgr-12.c:quantize_float
587
588
589
METHODDEF(void)
590
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
591
                  _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
592
                  JDIMENSION start_row, JDIMENSION start_col,
593
                  JDIMENSION num_blocks)
594
/* This version is used for floating-point DCT implementations. */
595
0
{
596
  /* This routine is heavily used, so it's worth coding it tightly. */
597
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
598
0
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
599
0
  FAST_FLOAT *workspace;
600
0
  JDIMENSION bi;
601
602
603
  /* Make sure the compiler doesn't look up these every pass */
604
0
  float_DCT_method_ptr do_dct = fdct->float_dct;
605
0
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
606
0
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
607
0
  workspace = fdct->float_workspace;
608
609
0
  sample_data += start_row;     /* fold in the vertical offset once */
610
611
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
612
    /* Load data into workspace, applying unsigned->signed conversion */
613
0
    (*do_convsamp) (sample_data, start_col, workspace);
614
615
    /* Perform the DCT */
616
0
    (*do_dct) (workspace);
617
618
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
619
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
620
0
  }
621
0
}
Unexecuted instantiation: jcdctmgr-8.c:forward_DCT_float
Unexecuted instantiation: jcdctmgr-12.c:forward_DCT_float
622
623
#endif /* DCT_FLOAT_SUPPORTED */
624
625
626
/*
627
 * Initialize FDCT manager.
628
 */
629
630
GLOBAL(void)
631
_jinit_forward_dct(j_compress_ptr cinfo)
632
0
{
633
0
  my_fdct_ptr fdct;
634
0
  int i;
635
636
0
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
0
  fdct = (my_fdct_ptr)
640
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
0
                                sizeof(my_fdct_controller));
642
0
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
0
  fdct->pub.start_pass = start_pass_fdctmgr;
644
645
  /* First determine the DCT... */
646
0
  switch (cinfo->dct_method) {
647
0
#ifdef DCT_ISLOW_SUPPORTED
648
0
  case JDCT_ISLOW:
649
0
    fdct->pub._forward_DCT = forward_DCT;
650
#ifdef WITH_SIMD
651
0
    if (jsimd_can_fdct_islow())
652
0
      fdct->dct = jsimd_fdct_islow;
653
0
    else
654
0
#endif
655
0
      fdct->dct = _jpeg_fdct_islow;
656
0
    break;
657
0
#endif
658
0
#ifdef DCT_IFAST_SUPPORTED
659
0
  case JDCT_IFAST:
660
0
    fdct->pub._forward_DCT = forward_DCT;
661
#ifdef WITH_SIMD
662
0
    if (jsimd_can_fdct_ifast())
663
0
      fdct->dct = jsimd_fdct_ifast;
664
0
    else
665
0
#endif
666
0
      fdct->dct = _jpeg_fdct_ifast;
667
0
    break;
668
0
#endif
669
0
#ifdef DCT_FLOAT_SUPPORTED
670
0
  case JDCT_FLOAT:
671
0
    fdct->pub._forward_DCT = forward_DCT_float;
672
#ifdef WITH_SIMD
673
0
    if (jsimd_can_fdct_float())
674
0
      fdct->float_dct = jsimd_fdct_float;
675
0
    else
676
0
#endif
677
0
      fdct->float_dct = jpeg_fdct_float;
678
0
    break;
679
0
#endif
680
0
  default:
681
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
682
0
    break;
683
0
  }
684
685
  /* ...then the supporting stages. */
686
0
  switch (cinfo->dct_method) {
687
0
#ifdef DCT_ISLOW_SUPPORTED
688
0
  case JDCT_ISLOW:
689
0
#endif
690
0
#ifdef DCT_IFAST_SUPPORTED
691
0
  case JDCT_IFAST:
692
0
#endif
693
0
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
#ifdef WITH_SIMD
695
0
    if (jsimd_can_convsamp())
696
0
      fdct->convsamp = jsimd_convsamp;
697
0
    else
698
0
#endif
699
0
      fdct->convsamp = convsamp;
700
#ifdef WITH_SIMD
701
0
    if (jsimd_can_quantize())
702
0
      fdct->quantize = jsimd_quantize;
703
0
    else
704
0
#endif
705
0
      fdct->quantize = quantize;
706
0
    break;
707
0
#endif
708
0
#ifdef DCT_FLOAT_SUPPORTED
709
0
  case JDCT_FLOAT:
710
#ifdef WITH_SIMD
711
0
    if (jsimd_can_convsamp_float())
712
0
      fdct->float_convsamp = jsimd_convsamp_float;
713
0
    else
714
0
#endif
715
0
      fdct->float_convsamp = convsamp_float;
716
#ifdef WITH_SIMD
717
0
    if (jsimd_can_quantize_float())
718
0
      fdct->float_quantize = jsimd_quantize_float;
719
0
    else
720
0
#endif
721
0
      fdct->float_quantize = quantize_float;
722
0
    break;
723
0
#endif
724
0
  default:
725
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
726
0
    break;
727
0
  }
728
729
  /* Allocate workspace memory */
730
0
#ifdef DCT_FLOAT_SUPPORTED
731
0
  if (cinfo->dct_method == JDCT_FLOAT)
732
0
    fdct->float_workspace = (FAST_FLOAT *)
733
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
735
0
  else
736
0
#endif
737
0
    fdct->workspace = (DCTELEM *)
738
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
0
                                  sizeof(DCTELEM) * DCTSIZE2);
740
741
  /* Mark divisor tables unallocated */
742
0
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
0
    fdct->divisors[i] = NULL;
744
0
#ifdef DCT_FLOAT_SUPPORTED
745
0
    fdct->float_divisors[i] = NULL;
746
0
#endif
747
0
  }
748
0
}
Unexecuted instantiation: jinit_forward_dct
Unexecuted instantiation: j12init_forward_dct