/src/qpdf/libqpdf/QPDF_encryption.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // This file implements methods from the QPDF class that involve |
2 | | // encryption. |
3 | | |
4 | | #include <qpdf/assert_debug.h> |
5 | | |
6 | | #include <qpdf/QPDF_private.hh> |
7 | | |
8 | | #include <qpdf/QPDFExc.hh> |
9 | | |
10 | | #include <qpdf/MD5.hh> |
11 | | #include <qpdf/Pl_AES_PDF.hh> |
12 | | #include <qpdf/Pl_Buffer.hh> |
13 | | #include <qpdf/Pl_RC4.hh> |
14 | | #include <qpdf/Pl_SHA2.hh> |
15 | | #include <qpdf/QTC.hh> |
16 | | #include <qpdf/QUtil.hh> |
17 | | #include <qpdf/RC4.hh> |
18 | | |
19 | | #include <algorithm> |
20 | | #include <cstring> |
21 | | |
22 | | static unsigned char const padding_string[] = { |
23 | | 0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41, 0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08, |
24 | | 0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80, 0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a}; |
25 | | |
26 | | static unsigned int const key_bytes = 32; |
27 | | |
28 | | // V4 key lengths apply to V <= 4 |
29 | | static unsigned int const OU_key_bytes_V4 = sizeof(MD5::Digest); |
30 | | |
31 | | static unsigned int const OU_key_bytes_V5 = 48; |
32 | | static unsigned int const OUE_key_bytes_V5 = 32; |
33 | | static unsigned int const Perms_key_bytes_V5 = 16; |
34 | | |
35 | | int |
36 | | QPDF::EncryptionData::getV() const |
37 | 3.29k | { |
38 | 3.29k | return this->V; |
39 | 3.29k | } |
40 | | |
41 | | int |
42 | | QPDF::EncryptionData::getR() const |
43 | 5.66k | { |
44 | 5.66k | return this->R; |
45 | 5.66k | } |
46 | | |
47 | | int |
48 | | QPDF::EncryptionData::getLengthBytes() const |
49 | 2.29k | { |
50 | 2.29k | return this->Length_bytes; |
51 | 2.29k | } |
52 | | |
53 | | int |
54 | | QPDF::EncryptionData::getP() const |
55 | 1.09k | { |
56 | 1.09k | return this->P; |
57 | 1.09k | } |
58 | | |
59 | | std::string const& |
60 | | QPDF::EncryptionData::getO() const |
61 | 3.52k | { |
62 | 3.52k | return this->O; |
63 | 3.52k | } |
64 | | |
65 | | std::string const& |
66 | | QPDF::EncryptionData::getU() const |
67 | 4.64k | { |
68 | 4.64k | return this->U; |
69 | 4.64k | } |
70 | | |
71 | | std::string const& |
72 | | QPDF::EncryptionData::getOE() const |
73 | 59 | { |
74 | 59 | return this->OE; |
75 | 59 | } |
76 | | |
77 | | std::string const& |
78 | | QPDF::EncryptionData::getUE() const |
79 | 380 | { |
80 | 380 | return this->UE; |
81 | 380 | } |
82 | | |
83 | | std::string const& |
84 | | QPDF::EncryptionData::getPerms() const |
85 | 439 | { |
86 | 439 | return this->Perms; |
87 | 439 | } |
88 | | |
89 | | std::string const& |
90 | | QPDF::EncryptionData::getId1() const |
91 | 2.18k | { |
92 | 2.18k | return this->id1; |
93 | 2.18k | } |
94 | | |
95 | | bool |
96 | | QPDF::EncryptionData::getEncryptMetadata() const |
97 | 1.06k | { |
98 | 1.06k | return this->encrypt_metadata; |
99 | 1.06k | } |
100 | | |
101 | | void |
102 | | QPDF::EncryptionData::setO(std::string const& O) |
103 | 0 | { |
104 | 0 | this->O = O; |
105 | 0 | } |
106 | | |
107 | | void |
108 | | QPDF::EncryptionData::setU(std::string const& U) |
109 | 0 | { |
110 | 0 | this->U = U; |
111 | 0 | } |
112 | | |
113 | | void |
114 | | QPDF::EncryptionData::setV5EncryptionParameters( |
115 | | std::string const& O, |
116 | | std::string const& OE, |
117 | | std::string const& U, |
118 | | std::string const& UE, |
119 | | std::string const& Perms) |
120 | 0 | { |
121 | 0 | this->O = O; |
122 | 0 | this->OE = OE; |
123 | 0 | this->U = U; |
124 | 0 | this->UE = UE; |
125 | 0 | this->Perms = Perms; |
126 | 0 | } |
127 | | |
128 | | static void |
129 | | pad_or_truncate_password_V4(std::string const& password, char k1[key_bytes]) |
130 | 1.35k | { |
131 | 1.35k | size_t password_bytes = std::min(QIntC::to_size(key_bytes), password.length()); |
132 | 1.35k | size_t pad_bytes = key_bytes - password_bytes; |
133 | 1.35k | memcpy(k1, password.c_str(), password_bytes); |
134 | 1.35k | memcpy(k1 + password_bytes, padding_string, pad_bytes); |
135 | 1.35k | } |
136 | | |
137 | | void |
138 | | QPDF::trim_user_password(std::string& user_password) |
139 | 16 | { |
140 | | // Although unnecessary, this routine trims the padding string from the end of a user password. |
141 | | // Its only purpose is for recovery of user passwords which is done in the test suite. |
142 | 16 | char const* cstr = user_password.c_str(); |
143 | 16 | size_t len = user_password.length(); |
144 | 16 | if (len < key_bytes) { |
145 | 0 | return; |
146 | 0 | } |
147 | | |
148 | 16 | char const* p1 = cstr; |
149 | 16 | char const* p2 = nullptr; |
150 | 17 | while ((p2 = strchr(p1, '\x28')) != nullptr) { |
151 | 1 | size_t idx = toS(p2 - cstr); |
152 | 1 | if (memcmp(p2, padding_string, len - idx) == 0) { |
153 | 0 | user_password = user_password.substr(0, idx); |
154 | 0 | return; |
155 | 1 | } else { |
156 | 1 | QTC::TC("qpdf", "QPDF_encryption skip 0x28"); |
157 | 1 | p1 = p2 + 1; |
158 | 1 | } |
159 | 1 | } |
160 | 16 | } |
161 | | |
162 | | static std::string |
163 | | pad_or_truncate_password_V4(std::string const& password) |
164 | 1.33k | { |
165 | 1.33k | char k1[key_bytes]; |
166 | 1.33k | pad_or_truncate_password_V4(password, k1); |
167 | 1.33k | return {k1, key_bytes}; |
168 | 1.33k | } |
169 | | |
170 | | static std::string |
171 | | truncate_password_V5(std::string const& password) |
172 | 2.95k | { |
173 | 2.95k | return password.substr(0, std::min(static_cast<size_t>(127), password.length())); |
174 | 2.95k | } |
175 | | |
176 | | static void |
177 | | iterate_md5_digest(MD5& md5, MD5::Digest& digest, int iterations, int key_len) |
178 | 895 | { |
179 | 895 | md5.digest(digest); |
180 | | |
181 | 43.6k | for (int i = 0; i < iterations; ++i) { |
182 | 42.7k | MD5 m; |
183 | 42.7k | m.encodeDataIncrementally(reinterpret_cast<char*>(digest), QIntC::to_size(key_len)); |
184 | 42.7k | m.digest(digest); |
185 | 42.7k | } |
186 | 895 | } |
187 | | |
188 | | static void |
189 | | iterate_rc4( |
190 | | unsigned char* data, |
191 | | size_t data_len, |
192 | | unsigned char* okey, |
193 | | int key_len, |
194 | | int iterations, |
195 | | bool reverse) |
196 | 701 | { |
197 | 701 | auto key_ph = std::make_unique<unsigned char[]>(QIntC::to_size(key_len)); |
198 | 701 | unsigned char* key = key_ph.get(); |
199 | 13.9k | for (int i = 0; i < iterations; ++i) { |
200 | 13.2k | int const xor_value = (reverse ? iterations - 1 - i : i); |
201 | 148k | for (int j = 0; j < key_len; ++j) { |
202 | 134k | key[j] = static_cast<unsigned char>(okey[j] ^ xor_value); |
203 | 134k | } |
204 | 13.2k | RC4 rc4(key, QIntC::to_int(key_len)); |
205 | 13.2k | rc4.process(data, data_len, data); |
206 | 13.2k | } |
207 | 701 | } |
208 | | |
209 | | static std::string |
210 | | process_with_aes( |
211 | | std::string const& key, |
212 | | bool encrypt, |
213 | | std::string const& data, |
214 | | size_t outlength = 0, |
215 | | unsigned int repetitions = 1, |
216 | | unsigned char const* iv = nullptr, |
217 | | size_t iv_length = 0) |
218 | 181k | { |
219 | 181k | Pl_Buffer buffer("buffer"); |
220 | 181k | Pl_AES_PDF aes( |
221 | 181k | "aes", &buffer, encrypt, QUtil::unsigned_char_pointer(key), QIntC::to_uint(key.length())); |
222 | 181k | if (iv) { |
223 | 180k | aes.setIV(iv, iv_length); |
224 | 180k | } else { |
225 | 878 | aes.useZeroIV(); |
226 | 878 | } |
227 | 181k | aes.disablePadding(); |
228 | 11.7M | for (unsigned int i = 0; i < repetitions; ++i) { |
229 | 11.5M | aes.writeString(data); |
230 | 11.5M | } |
231 | 181k | aes.finish(); |
232 | 181k | if (outlength == 0) { |
233 | 180k | return buffer.getString(); |
234 | 180k | } else { |
235 | 439 | return buffer.getString().substr(0, outlength); |
236 | 439 | } |
237 | 181k | } |
238 | | |
239 | | static std::string |
240 | | hash_V5( |
241 | | std::string const& password, |
242 | | std::string const& salt, |
243 | | std::string const& udata, |
244 | | QPDF::EncryptionData const& data) |
245 | 2.95k | { |
246 | 2.95k | Pl_SHA2 hash(256); |
247 | 2.95k | hash.writeString(password); |
248 | 2.95k | hash.writeString(salt); |
249 | 2.95k | hash.writeString(udata); |
250 | 2.95k | hash.finish(); |
251 | 2.95k | std::string K = hash.getRawDigest(); |
252 | | |
253 | 2.95k | std::string result; |
254 | 2.95k | if (data.getR() < 6) { |
255 | 340 | result = K; |
256 | 2.61k | } else { |
257 | | // Algorithm 2.B from ISO 32000-1 chapter 7: Computing a hash |
258 | | |
259 | 2.61k | int round_number = 0; |
260 | 2.61k | bool done = false; |
261 | 182k | while (!done) { |
262 | | // The hash algorithm has us setting K initially to the R5 value and then repeating a |
263 | | // series of steps 64 times before starting with the termination case testing. The |
264 | | // wording of the specification is very unclear as to the exact number of times it |
265 | | // should be run since the wording about whether the initial setup counts as round 0 or |
266 | | // not is ambiguous. This code counts the initial setup (R5) value as round 0, which |
267 | | // appears to be correct. This was determined to be correct by increasing or decreasing |
268 | | // the number of rounds by 1 or 2 from this value and generating 20 test files. In this |
269 | | // interpretation, all the test files worked with Adobe Reader X. In the other |
270 | | // configurations, many of the files did not work, and we were accurately able to |
271 | | // predict which files didn't work by looking at the conditions under which we |
272 | | // terminated repetition. |
273 | | |
274 | 180k | ++round_number; |
275 | 180k | std::string K1 = password + K + udata; |
276 | 180k | qpdf_assert_debug(K.length() >= 32); |
277 | 180k | std::string E = process_with_aes( |
278 | 180k | K.substr(0, 16), |
279 | 180k | true, |
280 | 180k | K1, |
281 | 180k | 0, |
282 | 180k | 64, |
283 | 180k | QUtil::unsigned_char_pointer(K.substr(16, 16)), |
284 | 180k | 16); |
285 | | |
286 | | // E_mod_3 is supposed to be mod 3 of the first 16 bytes of E taken as as a (128-bit) |
287 | | // big-endian number. Since (xy mod n) is equal to ((x mod n) + (y mod n)) mod n and |
288 | | // since 256 mod n is 1, we can just take the sums of the the mod 3s of each byte to get |
289 | | // the same result. |
290 | 180k | int E_mod_3 = 0; |
291 | 3.06M | for (unsigned int i = 0; i < 16; ++i) { |
292 | 2.88M | E_mod_3 += static_cast<unsigned char>(E.at(i)); |
293 | 2.88M | } |
294 | 180k | E_mod_3 %= 3; |
295 | 180k | int next_hash = ((E_mod_3 == 0) ? 256 : (E_mod_3 == 1) ? 384 : 512); |
296 | 180k | Pl_SHA2 sha2(next_hash); |
297 | 180k | sha2.writeString(E); |
298 | 180k | sha2.finish(); |
299 | 180k | K = sha2.getRawDigest(); |
300 | | |
301 | 180k | if (round_number >= 64) { |
302 | 15.6k | unsigned int ch = static_cast<unsigned char>(*(E.rbegin())); |
303 | | |
304 | 15.6k | if (ch <= QIntC::to_uint(round_number - 32)) { |
305 | 2.61k | done = true; |
306 | 2.61k | } |
307 | 15.6k | } |
308 | 180k | } |
309 | 2.61k | result = K.substr(0, 32); |
310 | 2.61k | } |
311 | | |
312 | 2.95k | return result; |
313 | 2.95k | } |
314 | | |
315 | | static void |
316 | | pad_short_parameter(std::string& param, size_t max_len) |
317 | 5.45k | { |
318 | 5.45k | if (param.length() < max_len) { |
319 | 2.19k | QTC::TC("qpdf", "QPDF_encryption pad short parameter"); |
320 | 2.19k | param.append(max_len - param.length(), '\0'); |
321 | 2.19k | } |
322 | 5.45k | } |
323 | | |
324 | | std::string |
325 | | QPDF::compute_data_key( |
326 | | std::string const& encryption_key, |
327 | | int objid, |
328 | | int generation, |
329 | | bool use_aes, |
330 | | int encryption_V, |
331 | | int encryption_R) |
332 | 2.99k | { |
333 | | // Algorithm 3.1 from the PDF 1.7 Reference Manual |
334 | | |
335 | 2.99k | std::string result = encryption_key; |
336 | | |
337 | 2.99k | if (encryption_V >= 5) { |
338 | | // Algorithm 3.1a (PDF 1.7 extension level 3): just use encryption key straight. |
339 | 806 | return result; |
340 | 806 | } |
341 | | |
342 | | // Append low three bytes of object ID and low two bytes of generation |
343 | 2.19k | result.append(1, static_cast<char>(objid & 0xff)); |
344 | 2.19k | result.append(1, static_cast<char>((objid >> 8) & 0xff)); |
345 | 2.19k | result.append(1, static_cast<char>((objid >> 16) & 0xff)); |
346 | 2.19k | result.append(1, static_cast<char>(generation & 0xff)); |
347 | 2.19k | result.append(1, static_cast<char>((generation >> 8) & 0xff)); |
348 | 2.19k | if (use_aes) { |
349 | 361 | result += "sAlT"; |
350 | 361 | } |
351 | | |
352 | 2.19k | MD5 md5; |
353 | 2.19k | md5.encodeDataIncrementally(result.c_str(), result.length()); |
354 | 2.19k | MD5::Digest digest; |
355 | 2.19k | md5.digest(digest); |
356 | 2.19k | return {reinterpret_cast<char*>(digest), std::min(result.length(), toS(16))}; |
357 | 2.99k | } |
358 | | |
359 | | std::string |
360 | | QPDF::compute_encryption_key(std::string const& password, EncryptionData const& data) |
361 | 656 | { |
362 | 656 | if (data.getV() >= 5) { |
363 | | // For V >= 5, the encryption key is generated and stored in the file, encrypted separately |
364 | | // with both user and owner passwords. |
365 | 0 | return recover_encryption_key_with_password(password, data); |
366 | 656 | } else { |
367 | | // For V < 5, the encryption key is derived from the user |
368 | | // password. |
369 | 656 | return compute_encryption_key_from_password(password, data); |
370 | 656 | } |
371 | 656 | } |
372 | | |
373 | | std::string |
374 | | QPDF::compute_encryption_key_from_password(std::string const& password, EncryptionData const& data) |
375 | 656 | { |
376 | | // Algorithm 3.2 from the PDF 1.7 Reference Manual |
377 | | |
378 | | // This code does not properly handle Unicode passwords. Passwords are supposed to be converted |
379 | | // from OS codepage characters to PDFDocEncoding. Unicode passwords are supposed to be |
380 | | // converted to OS codepage before converting to PDFDocEncoding. We instead require the |
381 | | // password to be presented in its final form. |
382 | | |
383 | 656 | MD5 md5; |
384 | 656 | md5.encodeDataIncrementally(pad_or_truncate_password_V4(password).c_str(), key_bytes); |
385 | 656 | md5.encodeDataIncrementally(data.getO().c_str(), key_bytes); |
386 | 656 | char pbytes[4]; |
387 | 656 | int P = data.getP(); |
388 | 656 | pbytes[0] = static_cast<char>(P & 0xff); |
389 | 656 | pbytes[1] = static_cast<char>((P >> 8) & 0xff); |
390 | 656 | pbytes[2] = static_cast<char>((P >> 16) & 0xff); |
391 | 656 | pbytes[3] = static_cast<char>((P >> 24) & 0xff); |
392 | 656 | md5.encodeDataIncrementally(pbytes, 4); |
393 | 656 | md5.encodeDataIncrementally(data.getId1().c_str(), data.getId1().length()); |
394 | 656 | if ((data.getR() >= 4) && (!data.getEncryptMetadata())) { |
395 | 2 | char bytes[4]; |
396 | 2 | memset(bytes, 0xff, 4); |
397 | 2 | md5.encodeDataIncrementally(bytes, 4); |
398 | 2 | } |
399 | 656 | MD5::Digest digest; |
400 | 656 | int key_len = std::min(toI(sizeof(digest)), data.getLengthBytes()); |
401 | 656 | iterate_md5_digest(md5, digest, ((data.getR() >= 3) ? 50 : 0), key_len); |
402 | 656 | return {reinterpret_cast<char*>(digest), toS(key_len)}; |
403 | 656 | } |
404 | | |
405 | | static void |
406 | | compute_O_rc4_key( |
407 | | std::string const& user_password, |
408 | | std::string const& owner_password, |
409 | | QPDF::EncryptionData const& data, |
410 | | unsigned char key[OU_key_bytes_V4]) |
411 | 239 | { |
412 | 239 | if (data.getV() >= 5) { |
413 | 0 | throw std::logic_error("compute_O_rc4_key called for file with V >= 5"); |
414 | 0 | } |
415 | 239 | std::string password = owner_password; |
416 | 239 | if (password.empty()) { |
417 | 239 | password = user_password; |
418 | 239 | } |
419 | 239 | MD5 md5; |
420 | 239 | md5.encodeDataIncrementally(pad_or_truncate_password_V4(password).c_str(), key_bytes); |
421 | 239 | MD5::Digest digest; |
422 | 239 | int key_len = std::min(QIntC::to_int(sizeof(digest)), data.getLengthBytes()); |
423 | 239 | iterate_md5_digest(md5, digest, ((data.getR() >= 3) ? 50 : 0), key_len); |
424 | 239 | memcpy(key, digest, OU_key_bytes_V4); |
425 | 239 | } |
426 | | |
427 | | static std::string |
428 | | compute_O_value( |
429 | | std::string const& user_password, |
430 | | std::string const& owner_password, |
431 | | QPDF::EncryptionData const& data) |
432 | 0 | { |
433 | | // Algorithm 3.3 from the PDF 1.7 Reference Manual |
434 | |
|
435 | 0 | unsigned char O_key[OU_key_bytes_V4]; |
436 | 0 | compute_O_rc4_key(user_password, owner_password, data, O_key); |
437 | |
|
438 | 0 | char upass[key_bytes]; |
439 | 0 | pad_or_truncate_password_V4(user_password, upass); |
440 | 0 | std::string k1(reinterpret_cast<char*>(O_key), OU_key_bytes_V4); |
441 | 0 | pad_short_parameter(k1, QIntC::to_size(data.getLengthBytes())); |
442 | 0 | iterate_rc4( |
443 | 0 | QUtil::unsigned_char_pointer(upass), |
444 | 0 | key_bytes, |
445 | 0 | O_key, |
446 | 0 | data.getLengthBytes(), |
447 | 0 | (data.getR() >= 3) ? 20 : 1, |
448 | 0 | false); |
449 | 0 | return {upass, key_bytes}; |
450 | 0 | } |
451 | | |
452 | | static std::string |
453 | | compute_U_value_R2(std::string const& user_password, QPDF::EncryptionData const& data) |
454 | 26 | { |
455 | | // Algorithm 3.4 from the PDF 1.7 Reference Manual |
456 | | |
457 | 26 | std::string k1 = QPDF::compute_encryption_key(user_password, data); |
458 | 26 | char udata[key_bytes]; |
459 | 26 | pad_or_truncate_password_V4("", udata); |
460 | 26 | pad_short_parameter(k1, QIntC::to_size(data.getLengthBytes())); |
461 | 26 | iterate_rc4( |
462 | 26 | QUtil::unsigned_char_pointer(udata), |
463 | 26 | key_bytes, |
464 | 26 | QUtil::unsigned_char_pointer(k1), |
465 | 26 | data.getLengthBytes(), |
466 | 26 | 1, |
467 | 26 | false); |
468 | 26 | return {udata, key_bytes}; |
469 | 26 | } |
470 | | |
471 | | static std::string |
472 | | compute_U_value_R3(std::string const& user_password, QPDF::EncryptionData const& data) |
473 | 436 | { |
474 | | // Algorithm 3.5 from the PDF 1.7 Reference Manual |
475 | | |
476 | 436 | std::string k1 = QPDF::compute_encryption_key(user_password, data); |
477 | 436 | MD5 md5; |
478 | 436 | md5.encodeDataIncrementally(pad_or_truncate_password_V4("").c_str(), key_bytes); |
479 | 436 | md5.encodeDataIncrementally(data.getId1().c_str(), data.getId1().length()); |
480 | 436 | MD5::Digest digest; |
481 | 436 | md5.digest(digest); |
482 | 436 | pad_short_parameter(k1, QIntC::to_size(data.getLengthBytes())); |
483 | 436 | iterate_rc4( |
484 | 436 | digest, |
485 | 436 | sizeof(MD5::Digest), |
486 | 436 | QUtil::unsigned_char_pointer(k1), |
487 | 436 | data.getLengthBytes(), |
488 | 436 | 20, |
489 | 436 | false); |
490 | 436 | char result[key_bytes]; |
491 | 436 | memcpy(result, digest, sizeof(MD5::Digest)); |
492 | | // pad with arbitrary data -- make it consistent for the sake of |
493 | | // testing |
494 | 7.41k | for (unsigned int i = sizeof(MD5::Digest); i < key_bytes; ++i) { |
495 | 6.97k | result[i] = static_cast<char>((i * i) % 0xff); |
496 | 6.97k | } |
497 | 436 | return {result, key_bytes}; |
498 | 436 | } |
499 | | |
500 | | static std::string |
501 | | compute_U_value(std::string const& user_password, QPDF::EncryptionData const& data) |
502 | 462 | { |
503 | 462 | if (data.getR() >= 3) { |
504 | 436 | return compute_U_value_R3(user_password, data); |
505 | 436 | } |
506 | | |
507 | 26 | return compute_U_value_R2(user_password, data); |
508 | 462 | } |
509 | | |
510 | | static bool |
511 | | check_user_password_V4(std::string const& user_password, QPDF::EncryptionData const& data) |
512 | 462 | { |
513 | | // Algorithm 3.6 from the PDF 1.7 Reference Manual |
514 | | |
515 | 462 | std::string u_value = compute_U_value(user_password, data); |
516 | 462 | size_t to_compare = ((data.getR() >= 3) ? sizeof(MD5::Digest) : key_bytes); |
517 | 462 | return (memcmp(data.getU().c_str(), u_value.c_str(), to_compare) == 0); |
518 | 462 | } |
519 | | |
520 | | static bool |
521 | | check_user_password_V5(std::string const& user_password, QPDF::EncryptionData const& data) |
522 | 1.22k | { |
523 | | // Algorithm 3.11 from the PDF 1.7 extension level 3 |
524 | | |
525 | 1.22k | std::string user_data = data.getU().substr(0, 32); |
526 | 1.22k | std::string validation_salt = data.getU().substr(32, 8); |
527 | 1.22k | std::string password = truncate_password_V5(user_password); |
528 | 1.22k | return (hash_V5(password, validation_salt, "", data) == user_data); |
529 | 1.22k | } |
530 | | |
531 | | static bool |
532 | | check_user_password(std::string const& user_password, QPDF::EncryptionData const& data) |
533 | 1.31k | { |
534 | 1.31k | if (data.getV() < 5) { |
535 | 462 | return check_user_password_V4(user_password, data); |
536 | 848 | } else { |
537 | 848 | return check_user_password_V5(user_password, data); |
538 | 848 | } |
539 | 1.31k | } |
540 | | |
541 | | static bool |
542 | | check_owner_password_V4( |
543 | | std::string& user_password, std::string const& owner_password, QPDF::EncryptionData const& data) |
544 | 239 | { |
545 | | // Algorithm 3.7 from the PDF 1.7 Reference Manual |
546 | | |
547 | 239 | unsigned char key[OU_key_bytes_V4]; |
548 | 239 | compute_O_rc4_key(user_password, owner_password, data, key); |
549 | 239 | unsigned char O_data[key_bytes]; |
550 | 239 | memcpy(O_data, QUtil::unsigned_char_pointer(data.getO()), key_bytes); |
551 | 239 | std::string k1(reinterpret_cast<char*>(key), OU_key_bytes_V4); |
552 | 239 | pad_short_parameter(k1, QIntC::to_size(data.getLengthBytes())); |
553 | 239 | iterate_rc4( |
554 | 239 | O_data, |
555 | 239 | key_bytes, |
556 | 239 | QUtil::unsigned_char_pointer(k1), |
557 | 239 | data.getLengthBytes(), |
558 | 239 | (data.getR() >= 3) ? 20 : 1, |
559 | 239 | true); |
560 | 239 | std::string new_user_password = std::string(reinterpret_cast<char*>(O_data), key_bytes); |
561 | 239 | bool result = false; |
562 | 239 | if (check_user_password(new_user_password, data)) { |
563 | 16 | result = true; |
564 | 16 | user_password = new_user_password; |
565 | 16 | } |
566 | 239 | return result; |
567 | 239 | } |
568 | | |
569 | | static bool |
570 | | check_owner_password_V5(std::string const& owner_password, QPDF::EncryptionData const& data) |
571 | 1.28k | { |
572 | | // Algorithm 3.12 from the PDF 1.7 extension level 3 |
573 | | |
574 | 1.28k | std::string user_data = data.getU().substr(0, 48); |
575 | 1.28k | std::string owner_data = data.getO().substr(0, 32); |
576 | 1.28k | std::string validation_salt = data.getO().substr(32, 8); |
577 | 1.28k | std::string password = truncate_password_V5(owner_password); |
578 | 1.28k | return (hash_V5(password, validation_salt, user_data, data) == owner_data); |
579 | 1.28k | } |
580 | | |
581 | | static bool |
582 | | check_owner_password( |
583 | | std::string& user_password, std::string const& owner_password, QPDF::EncryptionData const& data) |
584 | 1.08k | { |
585 | 1.08k | if (data.getV() < 5) { |
586 | 239 | return check_owner_password_V4(user_password, owner_password, data); |
587 | 848 | } else { |
588 | 848 | return check_owner_password_V5(owner_password, data); |
589 | 848 | } |
590 | 1.08k | } |
591 | | |
592 | | std::string |
593 | | QPDF::recover_encryption_key_with_password(std::string const& password, EncryptionData const& data) |
594 | 0 | { |
595 | | // Disregard whether Perms is valid. |
596 | 0 | bool disregard; |
597 | 0 | return recover_encryption_key_with_password(password, data, disregard); |
598 | 0 | } |
599 | | |
600 | | static void |
601 | | compute_U_UE_value_V5( |
602 | | std::string const& user_password, |
603 | | std::string const& encryption_key, |
604 | | QPDF::EncryptionData const& data, |
605 | | std::string& U, |
606 | | std::string& UE) |
607 | 0 | { |
608 | | // Algorithm 3.8 from the PDF 1.7 extension level 3 |
609 | 0 | char k[16]; |
610 | 0 | QUtil::initializeWithRandomBytes(reinterpret_cast<unsigned char*>(k), sizeof(k)); |
611 | 0 | std::string validation_salt(k, 8); |
612 | 0 | std::string key_salt(k + 8, 8); |
613 | 0 | U = hash_V5(user_password, validation_salt, "", data) + validation_salt + key_salt; |
614 | 0 | std::string intermediate_key = hash_V5(user_password, key_salt, "", data); |
615 | 0 | UE = process_with_aes(intermediate_key, true, encryption_key); |
616 | 0 | } |
617 | | |
618 | | static void |
619 | | compute_O_OE_value_V5( |
620 | | std::string const& owner_password, |
621 | | std::string const& encryption_key, |
622 | | QPDF::EncryptionData const& data, |
623 | | std::string const& U, |
624 | | std::string& O, |
625 | | std::string& OE) |
626 | 0 | { |
627 | | // Algorithm 3.9 from the PDF 1.7 extension level 3 |
628 | 0 | char k[16]; |
629 | 0 | QUtil::initializeWithRandomBytes(reinterpret_cast<unsigned char*>(k), sizeof(k)); |
630 | 0 | std::string validation_salt(k, 8); |
631 | 0 | std::string key_salt(k + 8, 8); |
632 | 0 | O = hash_V5(owner_password, validation_salt, U, data) + validation_salt + key_salt; |
633 | 0 | std::string intermediate_key = hash_V5(owner_password, key_salt, U, data); |
634 | 0 | OE = process_with_aes(intermediate_key, true, encryption_key); |
635 | 0 | } |
636 | | |
637 | | void |
638 | | compute_Perms_value_V5_clear( |
639 | | std::string const& encryption_key, QPDF::EncryptionData const& data, unsigned char k[16]) |
640 | 439 | { |
641 | | // From algorithm 3.10 from the PDF 1.7 extension level 3 |
642 | 439 | unsigned long long extended_perms = |
643 | 439 | 0xffffffff00000000LL | static_cast<unsigned long long>(data.getP()); |
644 | 3.95k | for (int i = 0; i < 8; ++i) { |
645 | 3.51k | k[i] = static_cast<unsigned char>(extended_perms & 0xff); |
646 | 3.51k | extended_perms >>= 8; |
647 | 3.51k | } |
648 | 439 | k[8] = data.getEncryptMetadata() ? 'T' : 'F'; |
649 | 439 | k[9] = 'a'; |
650 | 439 | k[10] = 'd'; |
651 | 439 | k[11] = 'b'; |
652 | 439 | QUtil::initializeWithRandomBytes(k + 12, 4); |
653 | 439 | } |
654 | | |
655 | | static std::string |
656 | | compute_Perms_value_V5(std::string const& encryption_key, QPDF::EncryptionData const& data) |
657 | 0 | { |
658 | | // Algorithm 3.10 from the PDF 1.7 extension level 3 |
659 | 0 | unsigned char k[16]; |
660 | 0 | compute_Perms_value_V5_clear(encryption_key, data, k); |
661 | 0 | return process_with_aes( |
662 | 0 | encryption_key, true, std::string(reinterpret_cast<char*>(k), sizeof(k))); |
663 | 0 | } |
664 | | |
665 | | std::string |
666 | | QPDF::recover_encryption_key_with_password( |
667 | | std::string const& password, EncryptionData const& data, bool& perms_valid) |
668 | 439 | { |
669 | | // Algorithm 3.2a from the PDF 1.7 extension level 3 |
670 | | |
671 | | // This code does not handle Unicode passwords correctly. Empirical evidence suggests that most |
672 | | // viewers don't. We are supposed to process the input string with the SASLprep (RFC 4013) |
673 | | // profile of stringprep (RFC 3454) and then convert the result to UTF-8. |
674 | | |
675 | 439 | perms_valid = false; |
676 | 439 | std::string key_password = truncate_password_V5(password); |
677 | 439 | std::string key_salt; |
678 | 439 | std::string user_data; |
679 | 439 | std::string encrypted_file_key; |
680 | 439 | if (check_owner_password_V5(key_password, data)) { |
681 | 59 | key_salt = data.getO().substr(40, 8); |
682 | 59 | user_data = data.getU().substr(0, 48); |
683 | 59 | encrypted_file_key = data.getOE().substr(0, 32); |
684 | 380 | } else if (check_user_password_V5(key_password, data)) { |
685 | 380 | key_salt = data.getU().substr(40, 8); |
686 | 380 | encrypted_file_key = data.getUE().substr(0, 32); |
687 | 380 | } |
688 | 439 | std::string intermediate_key = hash_V5(key_password, key_salt, user_data, data); |
689 | 439 | std::string file_key = process_with_aes(intermediate_key, false, encrypted_file_key); |
690 | | |
691 | | // Decrypt Perms and check against expected value |
692 | 439 | std::string perms_check = process_with_aes(file_key, false, data.getPerms(), 12); |
693 | 439 | unsigned char k[16]; |
694 | 439 | compute_Perms_value_V5_clear(file_key, data, k); |
695 | 439 | perms_valid = (memcmp(perms_check.c_str(), k, 12) == 0); |
696 | | |
697 | 439 | return file_key; |
698 | 439 | } |
699 | | |
700 | | QPDF::encryption_method_e |
701 | | QPDF::interpretCF(std::shared_ptr<EncryptionParameters> encp, QPDFObjectHandle cf) |
702 | 1.90k | { |
703 | 1.90k | if (cf.isName()) { |
704 | 1.31k | std::string filter = cf.getName(); |
705 | 1.31k | auto it = encp->crypt_filters.find(filter); |
706 | 1.31k | if (it != encp->crypt_filters.end()) { |
707 | 500 | return it->second; |
708 | 500 | } |
709 | 819 | if (filter == "/Identity") { |
710 | 2 | return e_none; |
711 | 2 | } |
712 | 817 | return e_unknown; |
713 | 819 | } |
714 | | // Default: /Identity |
715 | 585 | return e_none; |
716 | 1.90k | } |
717 | | |
718 | | void |
719 | | QPDF::initializeEncryption() |
720 | 2.89k | { |
721 | 2.89k | if (m->encp->encryption_initialized) { |
722 | 6 | return; |
723 | 6 | } |
724 | 2.88k | m->encp->encryption_initialized = true; |
725 | | |
726 | | // After we initialize encryption parameters, we must use stored key information and never look |
727 | | // at /Encrypt again. Otherwise, things could go wrong if someone mutates the encryption |
728 | | // dictionary. |
729 | | |
730 | 2.88k | if (!m->trailer.hasKey("/Encrypt")) { |
731 | 1.69k | return; |
732 | 1.69k | } |
733 | | |
734 | | // Go ahead and set m->encrypted here. That way, isEncrypted will return true even if there |
735 | | // were errors reading the encryption dictionary. |
736 | 1.19k | m->encp->encrypted = true; |
737 | | |
738 | 1.19k | std::string id1; |
739 | 1.19k | QPDFObjectHandle id_obj = m->trailer.getKey("/ID"); |
740 | 1.19k | if ((id_obj.isArray() && (id_obj.getArrayNItems() == 2) && id_obj.getArrayItem(0).isString())) { |
741 | 296 | id1 = id_obj.getArrayItem(0).getStringValue(); |
742 | 899 | } else { |
743 | | // Treating a missing ID as the empty string enables qpdf to decrypt some invalid encrypted |
744 | | // files with no /ID that poppler can read but Adobe Reader can't. |
745 | 899 | warn(damagedPDF("trailer", "invalid /ID in trailer dictionary")); |
746 | 899 | } |
747 | | |
748 | 1.19k | QPDFObjectHandle encryption_dict = m->trailer.getKey("/Encrypt"); |
749 | 1.19k | if (!encryption_dict.isDictionary()) { |
750 | 4 | throw damagedPDF("/Encrypt in trailer dictionary is not a dictionary"); |
751 | 4 | } |
752 | | |
753 | 1.19k | if (!(encryption_dict.getKey("/Filter").isName() && |
754 | 1.19k | (encryption_dict.getKey("/Filter").getName() == "/Standard"))) { |
755 | 11 | throw QPDFExc( |
756 | 11 | qpdf_e_unsupported, |
757 | 11 | m->file->getName(), |
758 | 11 | "encryption dictionary", |
759 | 11 | m->file->getLastOffset(), |
760 | 11 | "unsupported encryption filter"); |
761 | 11 | } |
762 | 1.18k | if (!encryption_dict.getKey("/SubFilter").isNull()) { |
763 | 1 | warn( |
764 | 1 | qpdf_e_unsupported, |
765 | 1 | "encryption dictionary", |
766 | 1 | m->file->getLastOffset(), |
767 | 1 | "file uses encryption SubFilters, which qpdf does not support"); |
768 | 1 | } |
769 | | |
770 | 1.18k | if (!(encryption_dict.getKey("/V").isInteger() && encryption_dict.getKey("/R").isInteger() && |
771 | 1.18k | encryption_dict.getKey("/O").isString() && encryption_dict.getKey("/U").isString() && |
772 | 1.18k | encryption_dict.getKey("/P").isInteger())) { |
773 | 8 | throw damagedPDF( |
774 | 8 | "encryption dictionary", |
775 | 8 | "some encryption dictionary parameters are missing or the wrong " |
776 | 8 | "type"); |
777 | 8 | } |
778 | | |
779 | 1.17k | int V = encryption_dict.getKey("/V").getIntValueAsInt(); |
780 | 1.17k | int R = encryption_dict.getKey("/R").getIntValueAsInt(); |
781 | 1.17k | std::string O = encryption_dict.getKey("/O").getStringValue(); |
782 | 1.17k | std::string U = encryption_dict.getKey("/U").getStringValue(); |
783 | 1.17k | int P = static_cast<int>(encryption_dict.getKey("/P").getIntValue()); |
784 | | |
785 | | // If supporting new encryption R/V values, remember to update error message inside this if |
786 | | // statement. |
787 | 1.17k | if (!(((R >= 2) && (R <= 6)) && ((V == 1) || (V == 2) || (V == 4) || (V == 5)))) { |
788 | 63 | throw QPDFExc( |
789 | 63 | qpdf_e_unsupported, |
790 | 63 | m->file->getName(), |
791 | 63 | "encryption dictionary", |
792 | 63 | m->file->getLastOffset(), |
793 | 63 | "Unsupported /R or /V in encryption dictionary; R = " + std::to_string(R) + |
794 | 63 | " (max 6), V = " + std::to_string(V) + " (max 5)"); |
795 | 63 | } |
796 | | |
797 | 1.10k | m->encp->encryption_V = V; |
798 | 1.10k | m->encp->encryption_R = R; |
799 | | |
800 | | // OE, UE, and Perms are only present if V >= 5. |
801 | 1.10k | std::string OE; |
802 | 1.10k | std::string UE; |
803 | 1.10k | std::string Perms; |
804 | | |
805 | 1.10k | if (V < 5) { |
806 | | // These must be exactly the right number of bytes. |
807 | 251 | pad_short_parameter(O, key_bytes); |
808 | 251 | pad_short_parameter(U, key_bytes); |
809 | 251 | if (!((O.length() == key_bytes) && (U.length() == key_bytes))) { |
810 | 12 | throw damagedPDF( |
811 | 12 | "encryption dictionary", |
812 | 12 | "incorrect length for /O and/or /U in encryption dictionary"); |
813 | 12 | } |
814 | 858 | } else { |
815 | 858 | if (!(encryption_dict.getKey("/OE").isString() && |
816 | 858 | encryption_dict.getKey("/UE").isString() && |
817 | 858 | encryption_dict.getKey("/Perms").isString())) { |
818 | 4 | throw damagedPDF( |
819 | 4 | "encryption dictionary", |
820 | 4 | "some V=5 encryption dictionary parameters are missing or the " |
821 | 4 | "wrong type"); |
822 | 4 | } |
823 | 854 | OE = encryption_dict.getKey("/OE").getStringValue(); |
824 | 854 | UE = encryption_dict.getKey("/UE").getStringValue(); |
825 | 854 | Perms = encryption_dict.getKey("/Perms").getStringValue(); |
826 | | |
827 | | // These may be longer than the minimum number of bytes. |
828 | 854 | pad_short_parameter(O, OU_key_bytes_V5); |
829 | 854 | pad_short_parameter(U, OU_key_bytes_V5); |
830 | 854 | pad_short_parameter(OE, OUE_key_bytes_V5); |
831 | 854 | pad_short_parameter(UE, OUE_key_bytes_V5); |
832 | 854 | pad_short_parameter(Perms, Perms_key_bytes_V5); |
833 | 854 | } |
834 | | |
835 | 1.09k | int Length = 0; |
836 | 1.09k | if (V <= 1) { |
837 | 119 | Length = 40; |
838 | 974 | } else if (V == 4) { |
839 | 81 | Length = 128; |
840 | 893 | } else if (V == 5) { |
841 | 850 | Length = 256; |
842 | 850 | } else { |
843 | 43 | if (encryption_dict.getKey("/Length").isInteger()) { |
844 | 17 | Length = encryption_dict.getKey("/Length").getIntValueAsInt(); |
845 | 17 | if ((Length % 8) || (Length < 40) || (Length > 128)) { |
846 | 12 | Length = 0; |
847 | 12 | } |
848 | 17 | } |
849 | 43 | } |
850 | 1.09k | if (Length == 0) { |
851 | | // Still no Length? Just take a guess. |
852 | 34 | Length = 128; |
853 | 34 | } |
854 | | |
855 | 1.09k | m->encp->encrypt_metadata = true; |
856 | 1.09k | if ((V >= 4) && (encryption_dict.getKey("/EncryptMetadata").isBool())) { |
857 | 1 | m->encp->encrypt_metadata = encryption_dict.getKey("/EncryptMetadata").getBoolValue(); |
858 | 1 | } |
859 | | |
860 | 1.09k | if ((V == 4) || (V == 5)) { |
861 | 931 | QPDFObjectHandle CF = encryption_dict.getKey("/CF"); |
862 | 6.09k | for (auto const& filter: CF.getKeys()) { |
863 | 6.09k | QPDFObjectHandle cdict = CF.getKey(filter); |
864 | 6.09k | if (cdict.isDictionary()) { |
865 | 2.73k | encryption_method_e method = e_none; |
866 | 2.73k | if (cdict.getKey("/CFM").isName()) { |
867 | 1.99k | std::string method_name = cdict.getKey("/CFM").getName(); |
868 | 1.99k | if (method_name == "/V2") { |
869 | 107 | QTC::TC("qpdf", "QPDF_encryption CFM V2"); |
870 | 107 | method = e_rc4; |
871 | 1.89k | } else if (method_name == "/AESV2") { |
872 | 177 | QTC::TC("qpdf", "QPDF_encryption CFM AESV2"); |
873 | 177 | method = e_aes; |
874 | 1.71k | } else if (method_name == "/AESV3") { |
875 | 240 | QTC::TC("qpdf", "QPDF_encryption CFM AESV3"); |
876 | 240 | method = e_aesv3; |
877 | 1.47k | } else { |
878 | | // Don't complain now -- maybe we won't need to reference this type. |
879 | 1.47k | method = e_unknown; |
880 | 1.47k | } |
881 | 1.99k | } |
882 | 2.73k | m->encp->crypt_filters[filter] = method; |
883 | 2.73k | } |
884 | 6.09k | } |
885 | | |
886 | 931 | QPDFObjectHandle StmF = encryption_dict.getKey("/StmF"); |
887 | 931 | QPDFObjectHandle StrF = encryption_dict.getKey("/StrF"); |
888 | 931 | QPDFObjectHandle EFF = encryption_dict.getKey("/EFF"); |
889 | 931 | m->encp->cf_stream = interpretCF(m->encp, StmF); |
890 | 931 | m->encp->cf_string = interpretCF(m->encp, StrF); |
891 | 931 | if (EFF.isName()) { |
892 | | // qpdf does not use this for anything other than informational purposes. This is |
893 | | // intended to instruct conforming writers on which crypt filter should be used when new |
894 | | // file attachments are added to a PDF file, but qpdf never generates encrypted files |
895 | | // with non-default crypt filters. Prior to 10.2, I was under the mistaken impression |
896 | | // that this was supposed to be used for decrypting attachments, but the code was wrong |
897 | | // in a way that turns out not to have mattered because no writers were generating files |
898 | | // the way I was imagining. Still, providing this information could be useful when |
899 | | // looking at a file generated by something else, such as Acrobat when specifying that |
900 | | // only attachments should be encrypted. |
901 | 46 | m->encp->cf_file = interpretCF(m->encp, EFF); |
902 | 885 | } else { |
903 | 885 | m->encp->cf_file = m->encp->cf_stream; |
904 | 885 | } |
905 | 931 | } |
906 | | |
907 | 1.09k | EncryptionData data(V, R, Length / 8, P, O, U, OE, UE, Perms, id1, m->encp->encrypt_metadata); |
908 | 1.09k | if (m->provided_password_is_hex_key) { |
909 | | // ignore passwords in file |
910 | 1.09k | } else { |
911 | 1.09k | m->encp->owner_password_matched = |
912 | 1.09k | check_owner_password(m->encp->user_password, m->encp->provided_password, data); |
913 | 1.09k | if (m->encp->owner_password_matched && (V < 5)) { |
914 | | // password supplied was owner password; user_password has been initialized for V < 5 |
915 | 16 | if (getTrimmedUserPassword() == m->encp->provided_password) { |
916 | 0 | m->encp->user_password_matched = true; |
917 | 0 | QTC::TC("qpdf", "QPDF_encryption user matches owner V < 5"); |
918 | 0 | } |
919 | 1.07k | } else { |
920 | 1.07k | m->encp->user_password_matched = check_user_password(m->encp->provided_password, data); |
921 | 1.07k | if (m->encp->user_password_matched) { |
922 | 563 | m->encp->user_password = m->encp->provided_password; |
923 | 563 | } |
924 | 1.07k | } |
925 | 1.09k | if (m->encp->user_password_matched && m->encp->owner_password_matched) { |
926 | 5 | QTC::TC("qpdf", "QPDF_encryption same password", (V < 5) ? 0 : 1); |
927 | 5 | } |
928 | 1.09k | if (!(m->encp->owner_password_matched || m->encp->user_password_matched)) { |
929 | 454 | throw QPDFExc(qpdf_e_password, m->file->getName(), "", 0, "invalid password"); |
930 | 454 | } |
931 | 1.09k | } |
932 | | |
933 | 639 | if (m->provided_password_is_hex_key) { |
934 | 0 | m->encp->encryption_key = QUtil::hex_decode(m->encp->provided_password); |
935 | 639 | } else if (V < 5) { |
936 | | // For V < 5, the user password is encrypted with the owner password, and the user password |
937 | | // is always used for computing the encryption key. |
938 | 194 | m->encp->encryption_key = compute_encryption_key(m->encp->user_password, data); |
939 | 445 | } else { |
940 | | // For V >= 5, either password can be used independently to compute the encryption key, and |
941 | | // neither password can be used to recover the other. |
942 | 445 | bool perms_valid; |
943 | 445 | m->encp->encryption_key = |
944 | 445 | recover_encryption_key_with_password(m->encp->provided_password, data, perms_valid); |
945 | 445 | if (!perms_valid) { |
946 | 407 | warn(damagedPDF( |
947 | 407 | "encryption dictionary", |
948 | 407 | "/Perms field in encryption dictionary doesn't match expected " |
949 | 407 | "value")); |
950 | 407 | } |
951 | 445 | } |
952 | 639 | } |
953 | | |
954 | | std::string |
955 | | QPDF::getKeyForObject(std::shared_ptr<EncryptionParameters> encp, QPDFObjGen og, bool use_aes) |
956 | 35.5k | { |
957 | 35.5k | if (!encp->encrypted) { |
958 | 0 | throw std::logic_error("request for encryption key in non-encrypted PDF"); |
959 | 0 | } |
960 | | |
961 | 35.5k | if (og != encp->cached_key_og) { |
962 | 2.99k | encp->cached_object_encryption_key = compute_data_key( |
963 | 2.99k | encp->encryption_key, |
964 | 2.99k | og.getObj(), |
965 | 2.99k | og.getGen(), |
966 | 2.99k | use_aes, |
967 | 2.99k | encp->encryption_V, |
968 | 2.99k | encp->encryption_R); |
969 | 2.99k | encp->cached_key_og = og; |
970 | 2.99k | } |
971 | | |
972 | 35.5k | return encp->cached_object_encryption_key; |
973 | 35.5k | } |
974 | | |
975 | | void |
976 | | QPDF::decryptString(std::string& str, QPDFObjGen og) |
977 | 36.5k | { |
978 | 36.5k | if (!og.isIndirect()) { |
979 | 0 | return; |
980 | 0 | } |
981 | 36.5k | bool use_aes = false; |
982 | 36.5k | if (m->encp->encryption_V >= 4) { |
983 | 13.9k | switch (m->encp->cf_string) { |
984 | 1.25k | case e_none: |
985 | 1.25k | return; |
986 | | |
987 | 11.5k | case e_aes: |
988 | 11.5k | use_aes = true; |
989 | 11.5k | break; |
990 | | |
991 | 611 | case e_aesv3: |
992 | 611 | use_aes = true; |
993 | 611 | break; |
994 | | |
995 | 461 | case e_rc4: |
996 | 461 | break; |
997 | | |
998 | 127 | default: |
999 | 127 | warn(damagedPDF( |
1000 | 127 | "unknown encryption filter for strings (check /StrF in " |
1001 | 127 | "/Encrypt dictionary); strings may be decrypted improperly")); |
1002 | | // To avoid repeated warnings, reset cf_string. Assume we'd want to use AES if V == 4. |
1003 | 127 | m->encp->cf_string = e_aes; |
1004 | 127 | use_aes = true; |
1005 | 127 | break; |
1006 | 13.9k | } |
1007 | 13.9k | } |
1008 | | |
1009 | 35.3k | std::string key = getKeyForObject(m->encp, og, use_aes); |
1010 | 35.3k | try { |
1011 | 35.3k | if (use_aes) { |
1012 | 12.2k | QTC::TC("qpdf", "QPDF_encryption aes decode string"); |
1013 | 12.2k | Pl_Buffer bufpl("decrypted string"); |
1014 | 12.2k | Pl_AES_PDF pl( |
1015 | 12.2k | "aes decrypt string", |
1016 | 12.2k | &bufpl, |
1017 | 12.2k | false, |
1018 | 12.2k | QUtil::unsigned_char_pointer(key), |
1019 | 12.2k | key.length()); |
1020 | 12.2k | pl.writeString(str); |
1021 | 12.2k | pl.finish(); |
1022 | 12.2k | str = bufpl.getString(); |
1023 | 23.0k | } else { |
1024 | 23.0k | QTC::TC("qpdf", "QPDF_encryption rc4 decode string"); |
1025 | 23.0k | size_t vlen = str.length(); |
1026 | | // Using std::shared_ptr guarantees that tmp will be freed even if rc4.process throws an |
1027 | | // exception. |
1028 | 23.0k | auto tmp = QUtil::make_unique_cstr(str); |
1029 | 23.0k | RC4 rc4(QUtil::unsigned_char_pointer(key), toI(key.length())); |
1030 | 23.0k | auto data = QUtil::unsigned_char_pointer(tmp.get()); |
1031 | 23.0k | rc4.process(data, vlen, data); |
1032 | 23.0k | str = std::string(tmp.get(), vlen); |
1033 | 23.0k | } |
1034 | 35.3k | } catch (QPDFExc&) { |
1035 | 0 | throw; |
1036 | 0 | } catch (std::runtime_error& e) { |
1037 | 0 | throw damagedPDF("error decrypting string for object " + og.unparse() + ": " + e.what()); |
1038 | 0 | } |
1039 | 35.3k | } |
1040 | | |
1041 | | // Prepend a decryption pipeline to 'pipeline'. The decryption pipeline (returned as |
1042 | | // 'decrypt_pipeline' must be owned by the caller to ensure that it stays alive while the pipeline |
1043 | | // is in use. |
1044 | | void |
1045 | | QPDF::decryptStream( |
1046 | | std::shared_ptr<EncryptionParameters> encp, |
1047 | | std::shared_ptr<InputSource> file, |
1048 | | QPDF& qpdf_for_warning, |
1049 | | Pipeline*& pipeline, |
1050 | | QPDFObjGen og, |
1051 | | QPDFObjectHandle& stream_dict, |
1052 | | bool is_root_metadata, |
1053 | | std::unique_ptr<Pipeline>& decrypt_pipeline) |
1054 | 259 | { |
1055 | 259 | std::string type; |
1056 | 259 | if (stream_dict.getKey("/Type").isName()) { |
1057 | 228 | type = stream_dict.getKey("/Type").getName(); |
1058 | 228 | } |
1059 | 259 | if (type == "/XRef") { |
1060 | 1 | QTC::TC("qpdf", "QPDF_encryption xref stream from encrypted file"); |
1061 | 1 | return; |
1062 | 1 | } |
1063 | 258 | bool use_aes = false; |
1064 | 258 | if (encp->encryption_V >= 4) { |
1065 | 256 | encryption_method_e method = e_unknown; |
1066 | 256 | std::string method_source = "/StmF from /Encrypt dictionary"; |
1067 | | |
1068 | 256 | if (stream_dict.getKey("/Filter").isOrHasName("/Crypt")) { |
1069 | 3 | if (stream_dict.getKey("/DecodeParms").isDictionary()) { |
1070 | 0 | QPDFObjectHandle decode_parms = stream_dict.getKey("/DecodeParms"); |
1071 | 0 | if (decode_parms.isDictionaryOfType("/CryptFilterDecodeParms")) { |
1072 | 0 | QTC::TC("qpdf", "QPDF_encryption stream crypt filter"); |
1073 | 0 | method = interpretCF(encp, decode_parms.getKey("/Name")); |
1074 | 0 | method_source = "stream's Crypt decode parameters"; |
1075 | 0 | } |
1076 | 3 | } else if ( |
1077 | 3 | stream_dict.getKey("/DecodeParms").isArray() && |
1078 | 3 | stream_dict.getKey("/Filter").isArray()) { |
1079 | 0 | QPDFObjectHandle filter = stream_dict.getKey("/Filter"); |
1080 | 0 | QPDFObjectHandle decode = stream_dict.getKey("/DecodeParms"); |
1081 | 0 | if (filter.getArrayNItems() == decode.getArrayNItems()) { |
1082 | 0 | for (int i = 0; i < filter.getArrayNItems(); ++i) { |
1083 | 0 | if (filter.getArrayItem(i).isNameAndEquals("/Crypt")) { |
1084 | 0 | QPDFObjectHandle crypt_params = decode.getArrayItem(i); |
1085 | 0 | if (crypt_params.isDictionary() && |
1086 | 0 | crypt_params.getKey("/Name").isName()) { |
1087 | 0 | QTC::TC("qpdf", "QPDF_encrypt crypt array"); |
1088 | 0 | method = interpretCF(encp, crypt_params.getKey("/Name")); |
1089 | 0 | method_source = "stream's Crypt decode parameters (array)"; |
1090 | 0 | } |
1091 | 0 | } |
1092 | 0 | } |
1093 | 0 | } |
1094 | 0 | } |
1095 | 3 | } |
1096 | | |
1097 | 256 | if (method == e_unknown) { |
1098 | 256 | if ((!encp->encrypt_metadata) && is_root_metadata) { |
1099 | 0 | QTC::TC("qpdf", "QPDF_encryption cleartext metadata"); |
1100 | 0 | method = e_none; |
1101 | 256 | } else { |
1102 | 256 | method = encp->cf_stream; |
1103 | 256 | } |
1104 | 256 | } |
1105 | 256 | use_aes = false; |
1106 | 256 | switch (method) { |
1107 | 46 | case e_none: |
1108 | 46 | return; |
1109 | 0 | break; |
1110 | | |
1111 | 21 | case e_aes: |
1112 | 21 | use_aes = true; |
1113 | 21 | break; |
1114 | | |
1115 | 45 | case e_aesv3: |
1116 | 45 | use_aes = true; |
1117 | 45 | break; |
1118 | | |
1119 | 71 | case e_rc4: |
1120 | 71 | break; |
1121 | | |
1122 | 73 | default: |
1123 | | // filter local to this stream. |
1124 | 73 | qpdf_for_warning.warn(QPDFExc( |
1125 | 73 | qpdf_e_damaged_pdf, |
1126 | 73 | file->getName(), |
1127 | 73 | "", |
1128 | 73 | file->getLastOffset(), |
1129 | 73 | "unknown encryption filter for streams (check " + method_source + |
1130 | 73 | "); streams may be decrypted improperly")); |
1131 | | // To avoid repeated warnings, reset cf_stream. Assume we'd want to use AES if V == 4. |
1132 | 73 | encp->cf_stream = e_aes; |
1133 | 73 | use_aes = true; |
1134 | 73 | break; |
1135 | 256 | } |
1136 | 256 | } |
1137 | 211 | std::string key = getKeyForObject(encp, og, use_aes); |
1138 | 211 | if (use_aes) { |
1139 | 138 | QTC::TC("qpdf", "QPDF_encryption aes decode stream"); |
1140 | 138 | decrypt_pipeline = std::make_unique<Pl_AES_PDF>( |
1141 | 138 | "AES stream decryption", |
1142 | 138 | pipeline, |
1143 | 138 | false, |
1144 | 138 | QUtil::unsigned_char_pointer(key), |
1145 | 138 | key.length()); |
1146 | 138 | } else { |
1147 | 73 | QTC::TC("qpdf", "QPDF_encryption rc4 decode stream"); |
1148 | 73 | decrypt_pipeline = std::make_unique<Pl_RC4>( |
1149 | 73 | "RC4 stream decryption", |
1150 | 73 | pipeline, |
1151 | 73 | QUtil::unsigned_char_pointer(key), |
1152 | 73 | toI(key.length())); |
1153 | 73 | } |
1154 | 211 | pipeline = decrypt_pipeline.get(); |
1155 | 211 | } |
1156 | | |
1157 | | void |
1158 | | QPDF::compute_encryption_O_U( |
1159 | | char const* user_password, |
1160 | | char const* owner_password, |
1161 | | int V, |
1162 | | int R, |
1163 | | int key_len, |
1164 | | int P, |
1165 | | bool encrypt_metadata, |
1166 | | std::string const& id1, |
1167 | | std::string& O, |
1168 | | std::string& U) |
1169 | 0 | { |
1170 | 0 | if (V >= 5) { |
1171 | 0 | throw std::logic_error("compute_encryption_O_U called for file with V >= 5"); |
1172 | 0 | } |
1173 | 0 | EncryptionData data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata); |
1174 | 0 | data.setO(compute_O_value(user_password, owner_password, data)); |
1175 | 0 | O = data.getO(); |
1176 | 0 | data.setU(compute_U_value(user_password, data)); |
1177 | 0 | U = data.getU(); |
1178 | 0 | } |
1179 | | |
1180 | | void |
1181 | | QPDF::compute_encryption_parameters_V5( |
1182 | | char const* user_password, |
1183 | | char const* owner_password, |
1184 | | int V, |
1185 | | int R, |
1186 | | int key_len, |
1187 | | int P, |
1188 | | bool encrypt_metadata, |
1189 | | std::string const& id1, |
1190 | | std::string& encryption_key, |
1191 | | std::string& O, |
1192 | | std::string& U, |
1193 | | std::string& OE, |
1194 | | std::string& UE, |
1195 | | std::string& Perms) |
1196 | 0 | { |
1197 | 0 | EncryptionData data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata); |
1198 | 0 | unsigned char k[key_bytes]; |
1199 | 0 | QUtil::initializeWithRandomBytes(k, key_bytes); |
1200 | 0 | encryption_key = std::string(reinterpret_cast<char*>(k), key_bytes); |
1201 | 0 | compute_U_UE_value_V5(user_password, encryption_key, data, U, UE); |
1202 | 0 | compute_O_OE_value_V5(owner_password, encryption_key, data, U, O, OE); |
1203 | 0 | Perms = compute_Perms_value_V5(encryption_key, data); |
1204 | 0 | data.setV5EncryptionParameters(O, OE, U, UE, Perms); |
1205 | 0 | } |
1206 | | |
1207 | | std::string const& |
1208 | | QPDF::getPaddedUserPassword() const |
1209 | 0 | { |
1210 | 0 | return m->encp->user_password; |
1211 | 0 | } |
1212 | | |
1213 | | std::string |
1214 | | QPDF::getTrimmedUserPassword() const |
1215 | 16 | { |
1216 | 16 | std::string result = m->encp->user_password; |
1217 | 16 | trim_user_password(result); |
1218 | 16 | return result; |
1219 | 16 | } |
1220 | | |
1221 | | std::string |
1222 | | QPDF::getEncryptionKey() const |
1223 | 0 | { |
1224 | 0 | return m->encp->encryption_key; |
1225 | 0 | } |
1226 | | |
1227 | | bool |
1228 | | QPDF::isEncrypted() const |
1229 | 0 | { |
1230 | 0 | return m->encp->encrypted; |
1231 | 0 | } |
1232 | | |
1233 | | bool |
1234 | | QPDF::isEncrypted(int& R, int& P) |
1235 | 0 | { |
1236 | 0 | int V; |
1237 | 0 | encryption_method_e stream, string, file; |
1238 | 0 | return isEncrypted(R, P, V, stream, string, file); |
1239 | 0 | } |
1240 | | |
1241 | | bool |
1242 | | QPDF::isEncrypted( |
1243 | | int& R, |
1244 | | int& P, |
1245 | | int& V, |
1246 | | encryption_method_e& stream_method, |
1247 | | encryption_method_e& string_method, |
1248 | | encryption_method_e& file_method) |
1249 | 0 | { |
1250 | 0 | if (m->encp->encrypted) { |
1251 | 0 | QPDFObjectHandle trailer = getTrailer(); |
1252 | 0 | QPDFObjectHandle encrypt = trailer.getKey("/Encrypt"); |
1253 | 0 | QPDFObjectHandle Pkey = encrypt.getKey("/P"); |
1254 | 0 | QPDFObjectHandle Rkey = encrypt.getKey("/R"); |
1255 | 0 | QPDFObjectHandle Vkey = encrypt.getKey("/V"); |
1256 | 0 | P = static_cast<int>(Pkey.getIntValue()); |
1257 | 0 | R = Rkey.getIntValueAsInt(); |
1258 | 0 | V = Vkey.getIntValueAsInt(); |
1259 | 0 | stream_method = m->encp->cf_stream; |
1260 | 0 | string_method = m->encp->cf_string; |
1261 | 0 | file_method = m->encp->cf_file; |
1262 | 0 | return true; |
1263 | 0 | } else { |
1264 | 0 | return false; |
1265 | 0 | } |
1266 | 0 | } |
1267 | | |
1268 | | bool |
1269 | | QPDF::ownerPasswordMatched() const |
1270 | 0 | { |
1271 | 0 | return m->encp->owner_password_matched; |
1272 | 0 | } |
1273 | | |
1274 | | bool |
1275 | | QPDF::userPasswordMatched() const |
1276 | 0 | { |
1277 | 0 | return m->encp->user_password_matched; |
1278 | 0 | } |
1279 | | |
1280 | | static bool |
1281 | | is_bit_set(int P, int bit) |
1282 | 0 | { |
1283 | | // Bits in P are numbered from 1 in the spec |
1284 | 0 | return ((P & (1 << (bit - 1))) != 0); |
1285 | 0 | } |
1286 | | |
1287 | | bool |
1288 | | QPDF::allowAccessibility() |
1289 | 0 | { |
1290 | 0 | int R = 0; |
1291 | 0 | int P = 0; |
1292 | 0 | bool status = true; |
1293 | 0 | if (isEncrypted(R, P)) { |
1294 | 0 | if (R < 3) { |
1295 | 0 | status = is_bit_set(P, 5); |
1296 | 0 | } else { |
1297 | 0 | status = is_bit_set(P, 10); |
1298 | 0 | } |
1299 | 0 | } |
1300 | 0 | return status; |
1301 | 0 | } |
1302 | | |
1303 | | bool |
1304 | | QPDF::allowExtractAll() |
1305 | 0 | { |
1306 | 0 | int R = 0; |
1307 | 0 | int P = 0; |
1308 | 0 | bool status = true; |
1309 | 0 | if (isEncrypted(R, P)) { |
1310 | 0 | status = is_bit_set(P, 5); |
1311 | 0 | } |
1312 | 0 | return status; |
1313 | 0 | } |
1314 | | |
1315 | | bool |
1316 | | QPDF::allowPrintLowRes() |
1317 | 0 | { |
1318 | 0 | int R = 0; |
1319 | 0 | int P = 0; |
1320 | 0 | bool status = true; |
1321 | 0 | if (isEncrypted(R, P)) { |
1322 | 0 | status = is_bit_set(P, 3); |
1323 | 0 | } |
1324 | 0 | return status; |
1325 | 0 | } |
1326 | | |
1327 | | bool |
1328 | | QPDF::allowPrintHighRes() |
1329 | 0 | { |
1330 | 0 | int R = 0; |
1331 | 0 | int P = 0; |
1332 | 0 | bool status = true; |
1333 | 0 | if (isEncrypted(R, P)) { |
1334 | 0 | status = is_bit_set(P, 3); |
1335 | 0 | if ((R >= 3) && (!is_bit_set(P, 12))) { |
1336 | 0 | status = false; |
1337 | 0 | } |
1338 | 0 | } |
1339 | 0 | return status; |
1340 | 0 | } |
1341 | | |
1342 | | bool |
1343 | | QPDF::allowModifyAssembly() |
1344 | 0 | { |
1345 | 0 | int R = 0; |
1346 | 0 | int P = 0; |
1347 | 0 | bool status = true; |
1348 | 0 | if (isEncrypted(R, P)) { |
1349 | 0 | if (R < 3) { |
1350 | 0 | status = is_bit_set(P, 4); |
1351 | 0 | } else { |
1352 | 0 | status = is_bit_set(P, 11); |
1353 | 0 | } |
1354 | 0 | } |
1355 | 0 | return status; |
1356 | 0 | } |
1357 | | |
1358 | | bool |
1359 | | QPDF::allowModifyForm() |
1360 | 0 | { |
1361 | 0 | int R = 0; |
1362 | 0 | int P = 0; |
1363 | 0 | bool status = true; |
1364 | 0 | if (isEncrypted(R, P)) { |
1365 | 0 | if (R < 3) { |
1366 | 0 | status = is_bit_set(P, 6); |
1367 | 0 | } else { |
1368 | 0 | status = is_bit_set(P, 9); |
1369 | 0 | } |
1370 | 0 | } |
1371 | 0 | return status; |
1372 | 0 | } |
1373 | | |
1374 | | bool |
1375 | | QPDF::allowModifyAnnotation() |
1376 | 0 | { |
1377 | 0 | int R = 0; |
1378 | 0 | int P = 0; |
1379 | 0 | bool status = true; |
1380 | 0 | if (isEncrypted(R, P)) { |
1381 | 0 | status = is_bit_set(P, 6); |
1382 | 0 | } |
1383 | 0 | return status; |
1384 | 0 | } |
1385 | | |
1386 | | bool |
1387 | | QPDF::allowModifyOther() |
1388 | 0 | { |
1389 | 0 | int R = 0; |
1390 | 0 | int P = 0; |
1391 | 0 | bool status = true; |
1392 | 0 | if (isEncrypted(R, P)) { |
1393 | 0 | status = is_bit_set(P, 4); |
1394 | 0 | } |
1395 | 0 | return status; |
1396 | 0 | } |
1397 | | |
1398 | | bool |
1399 | | QPDF::allowModifyAll() |
1400 | 0 | { |
1401 | 0 | int R = 0; |
1402 | 0 | int P = 0; |
1403 | 0 | bool status = true; |
1404 | 0 | if (isEncrypted(R, P)) { |
1405 | 0 | status = (is_bit_set(P, 4) && is_bit_set(P, 6)); |
1406 | 0 | if (R >= 3) { |
1407 | 0 | status = status && (is_bit_set(P, 9) && is_bit_set(P, 11)); |
1408 | 0 | } |
1409 | 0 | } |
1410 | 0 | return status; |
1411 | 0 | } |