Coverage Report

Created: 2025-07-11 07:01

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.22k
{
81
1.22k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.22k
  int ci, blkn, dctbl, actbl;
83
1.22k
  d_derived_tbl **pdtbl;
84
1.22k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.22k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.22k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
39
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
3.65k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
2.42k
    compptr = cinfo->cur_comp_info[ci];
96
2.42k
    dctbl = compptr->dc_tbl_no;
97
2.42k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
2.42k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
2.42k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
2.42k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
2.42k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
2.42k
    entropy->saved.last_dc_val[ci] = 0;
106
2.42k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
4.43k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
3.20k
    ci = cinfo->MCU_membership[blkn];
111
3.20k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
3.20k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
3.20k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
3.20k
    if (compptr->component_needed) {
117
3.20k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
3.20k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
3.20k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
3.20k
  }
124
125
  /* Initialize bitread state variables */
126
1.22k
  entropy->bitstate.bits_left = 0;
127
1.22k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.22k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.22k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.22k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
13.2k
{
146
13.2k
  JHUFF_TBL *htbl;
147
13.2k
  d_derived_tbl *dtbl;
148
13.2k
  int p, i, l, si, numsymbols;
149
13.2k
  int lookbits, ctr;
150
13.2k
  char huffsize[257];
151
13.2k
  unsigned int huffcode[257];
152
13.2k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
13.2k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
9
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
13.2k
  htbl =
162
13.2k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
13.2k
  if (htbl == NULL)
164
10
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
13.2k
  if (*pdtbl == NULL)
168
5.72k
    *pdtbl = (d_derived_tbl *)
169
5.72k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.72k
                                  sizeof(d_derived_tbl));
171
13.2k
  dtbl = *pdtbl;
172
13.2k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
13.2k
  p = 0;
177
225k
  for (l = 1; l <= 16; l++) {
178
212k
    i = (int)htbl->bits[l];
179
212k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
756k
    while (i--)
182
544k
      huffsize[p++] = (char)l;
183
212k
  }
184
13.2k
  huffsize[p] = 0;
185
13.2k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
13.2k
  code = 0;
191
13.2k
  si = huffsize[0];
192
13.2k
  p = 0;
193
129k
  while (huffsize[p]) {
194
660k
    while (((int)huffsize[p]) == si) {
195
543k
      huffcode[p++] = code;
196
543k
      code++;
197
543k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
116k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
19
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
116k
    code <<= 1;
204
116k
    si++;
205
116k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
13.2k
  p = 0;
210
224k
  for (l = 1; l <= 16; l++) {
211
211k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
109k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
109k
      p += htbl->bits[l];
217
109k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
109k
    } else {
219
101k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
101k
    }
221
211k
  }
222
13.2k
  dtbl->valoffset[17] = 0;
223
13.2k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
3.40M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
3.38M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
13.2k
  p = 0;
236
119k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
280k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
174k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
3.40M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
3.23M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
3.23M
        lookbits++;
244
3.23M
      }
245
174k
    }
246
105k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
13.2k
  if (isDC) {
255
71.6k
    for (i = 0; i < numsymbols; i++) {
256
65.1k
      int sym = htbl->huffval[i];
257
65.1k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
23
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
65.1k
    }
260
6.50k
  }
261
13.2k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
13.5M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
1.68M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
1.68M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
1.68M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
1.68M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
1.68M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
13.5M
    while (bits_left < MIN_GET_BITS) {
303
11.8M
      register int c;
304
305
      /* Attempt to read a byte */
306
11.8M
      if (bytes_in_buffer == 0) {
307
447
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
447
        next_input_byte = cinfo->src->next_input_byte;
310
447
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
447
      }
312
11.8M
      bytes_in_buffer--;
313
11.8M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
11.8M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
100k
        do {
323
100k
          if (bytes_in_buffer == 0) {
324
2
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
2
            next_input_byte = cinfo->src->next_input_byte;
327
2
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
2
          }
329
100k
          bytes_in_buffer--;
330
100k
          c = *next_input_byte++;
331
100k
        } while (c == 0xFF);
332
333
67.8k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
60.3k
          c = 0xFF;
336
60.3k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
7.54k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
7.54k
          goto no_more_bytes;
348
7.54k
        }
349
67.8k
      }
350
351
      /* OK, load c into get_buffer */
352
11.8M
      get_buffer = (get_buffer << 8) | c;
353
11.8M
      bits_left += 8;
354
11.8M
    } /* end while */
355
1.67M
  } else {
356
15.2k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
15.2k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
999
      if (!cinfo->entropy->insufficient_data) {
368
999
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
999
        cinfo->entropy->insufficient_data = TRUE;
370
999
      }
371
      /* Fill the buffer with zero bits */
372
999
      get_buffer <<= MIN_GET_BITS - bits_left;
373
999
      bits_left = MIN_GET_BITS;
374
999
    }
375
15.2k
  }
376
377
  /* Unload the local registers */
378
1.68M
  state->next_input_byte = next_input_byte;
379
1.68M
  state->bytes_in_buffer = bytes_in_buffer;
380
1.68M
  state->get_buffer = get_buffer;
381
1.68M
  state->bits_left = bits_left;
382
383
1.68M
  return TRUE;
384
1.68M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
2.47M
#define GET_BYTE { \
392
2.47M
  register int c0, c1; \
393
2.47M
  c0 = *buffer++; \
394
2.47M
  c1 = *buffer; \
395
2.47M
  /* Pre-execute most common case */ \
396
2.47M
  get_buffer = (get_buffer << 8) | c0; \
397
2.47M
  bits_left += 8; \
398
2.47M
  if (c0 == 0xFF) { \
399
83.7k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
83.7k
    buffer++; \
401
83.7k
    if (c1 != 0) { \
402
34.7k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
34.7k
      cinfo->unread_marker = c1; \
404
34.7k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
34.7k
      buffer -= 2; \
406
34.7k
      get_buffer &= ~0xFF; \
407
34.7k
    } \
408
83.7k
  } \
409
2.47M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
5.98M
  if (bits_left <= 16) { \
416
412k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
412k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
248k
{
440
248k
  register int l = min_bits;
441
248k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
248k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
248k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
480k
  while (code > htbl->maxcode[l]) {
453
232k
    code <<= 1;
454
232k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
232k
    code |= GET_BITS(1);
456
232k
    l++;
457
232k
  }
458
459
  /* Unload the local registers */
460
248k
  state->get_buffer = get_buffer;
461
248k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
248k
  if (l > 16) {
466
380
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
380
    return 0;                   /* fake a zero as the safest result */
468
380
  }
469
470
248k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
248k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
3.78M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
3.78M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.20k
{
514
1.20k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.20k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.20k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.20k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.20k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.40k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
2.19k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.20k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.20k
  if (cinfo->unread_marker == 0)
539
1.19k
    entropy->pub.insufficient_data = FALSE;
540
541
1.20k
  return TRUE;
542
1.20k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
101k
{
554
101k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
101k
  BITREAD_STATE_VARS;
556
101k
  int blkn;
557
101k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
101k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
101k
  state = entropy->saved;
563
564
302k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
200k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
200k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
200k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
200k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
200k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
200k
    if (s) {
575
95.3k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
95.3k
      r = GET_BITS(s);
577
95.3k
      s = HUFF_EXTEND(r, s);
578
95.3k
    }
579
580
200k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
200k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
200k
      s += state.last_dc_val[ci];
592
200k
      state.last_dc_val[ci] = s;
593
200k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
200k
        (*block)[0] = (JCOEF)s;
596
200k
      }
597
200k
    }
598
599
200k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
1.24M
      for (k = 1; k < DCTSIZE2; k++) {
604
1.23M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
1.23M
        r = s >> 4;
607
1.23M
        s &= 15;
608
609
1.23M
        if (s) {
610
1.01M
          k += r;
611
1.01M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.01M
          r = GET_BITS(s);
613
1.01M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.01M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.01M
        } else {
620
219k
          if (r != 15)
621
189k
            break;
622
30.7k
          k += 15;
623
30.7k
        }
624
1.23M
      }
625
626
200k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
231
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
231
    }
647
200k
  }
648
649
  /* Completed MCU, so update state */
650
101k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
101k
  entropy->saved = state;
652
101k
  return TRUE;
653
101k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
319k
{
665
319k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
319k
  BITREAD_STATE_VARS;
667
319k
  JOCTET *buffer;
668
319k
  int blkn;
669
319k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
319k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
319k
  buffer = (JOCTET *)br_state.next_input_byte;
675
319k
  state = entropy->saved;
676
677
741k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
421k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
421k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
421k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
421k
    register int s, k, r, l;
682
683
421k
    HUFF_DECODE_FAST(s, l, dctbl);
684
421k
    if (s) {
685
196k
      FILL_BIT_BUFFER_FAST
686
196k
      r = GET_BITS(s);
687
196k
      s = HUFF_EXTEND(r, s);
688
196k
    }
689
690
421k
    if (entropy->dc_needed[blkn]) {
691
421k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
421k
      s += state.last_dc_val[ci];
696
421k
      state.last_dc_val[ci] = s;
697
421k
      if (block)
698
421k
        (*block)[0] = (JCOEF)s;
699
421k
    }
700
701
421k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.98M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.89M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.89M
        r = s >> 4;
706
2.89M
        s &= 15;
707
708
2.89M
        if (s) {
709
2.47M
          k += r;
710
2.47M
          FILL_BIT_BUFFER_FAST
711
2.47M
          r = GET_BITS(s);
712
2.47M
          s = HUFF_EXTEND(r, s);
713
2.47M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
2.47M
        } else {
715
414k
          if (r != 15) break;
716
83.5k
          k += 15;
717
83.5k
        }
718
2.89M
      }
719
720
421k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
421k
  }
738
739
319k
  if (cinfo->unread_marker != 0) {
740
4.40k
    cinfo->unread_marker = 0;
741
4.40k
    return FALSE;
742
4.40k
  }
743
744
315k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
315k
  br_state.next_input_byte = buffer;
746
315k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
315k
  entropy->saved = state;
748
315k
  return TRUE;
749
319k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
417k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
417k
{
772
417k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
417k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
417k
  if (cinfo->restart_interval) {
777
64.8k
    if (entropy->restarts_to_go == 0)
778
1.20k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
64.8k
    usefast = 0;
781
64.8k
  }
782
783
417k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
417k
      cinfo->unread_marker != 0)
785
52.7k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
417k
  if (!entropy->pub.insufficient_data) {
791
792
417k
    if (usefast) {
793
319k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
319k
    } else {
795
101k
use_slow:
796
101k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
101k
    }
798
799
417k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
417k
  if (cinfo->restart_interval)
803
64.8k
    entropy->restarts_to_go--;
804
805
417k
  return TRUE;
806
417k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.23k
{
816
1.23k
  huff_entropy_ptr entropy;
817
1.23k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.23k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.23k
  entropy = (huff_entropy_ptr)
826
1.23k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.23k
                                sizeof(huff_entropy_decoder));
828
1.23k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.23k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.23k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
6.16k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
4.92k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
4.92k
  }
836
1.23k
}