Coverage Report

Created: 2025-07-12 06:26

/src/libjpeg-turbo/src/jdarith.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdarith.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Developed 1997-2015 by Guido Vollbeding.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015-2020, 2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains portable arithmetic entropy encoding routines for JPEG
12
 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
13
 *
14
 * Both sequential and progressive modes are supported in this single module.
15
 *
16
 * Suspension is not currently supported in this module.
17
 *
18
 * NOTE: All referenced figures are from
19
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
20
 */
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
26
27
196k
#define NEG_1  ((unsigned int)-1)
28
29
30
/* Expanded entropy decoder object for arithmetic decoding. */
31
32
typedef struct {
33
  struct jpeg_entropy_decoder pub; /* public fields */
34
35
  JLONG c;       /* C register, base of coding interval + input bit buffer */
36
  JLONG a;               /* A register, normalized size of coding interval */
37
  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
38
                                                         /* init: ct = -16 */
39
                                                         /* run: ct = 0..7 */
40
                                                         /* error: ct = -1 */
41
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
42
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
43
44
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
45
46
  /* Pointers to statistics areas (these workspaces have image lifespan) */
47
  unsigned char *dc_stats[NUM_ARITH_TBLS];
48
  unsigned char *ac_stats[NUM_ARITH_TBLS];
49
50
  /* Statistics bin for coding with fixed probability 0.5 */
51
  unsigned char fixed_bin[4];
52
} arith_entropy_decoder;
53
54
typedef arith_entropy_decoder *arith_entropy_ptr;
55
56
/* The following two definitions specify the allocation chunk size
57
 * for the statistics area.
58
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
60
 *
61
 * We use a compact representation with 1 byte per statistics bin,
62
 * thus the numbers directly represent byte sizes.
63
 * This 1 byte per statistics bin contains the meaning of the MPS
64
 * (more probable symbol) in the highest bit (mask 0x80), and the
65
 * index into the probability estimation state machine table
66
 * in the lower bits (mask 0x7F).
67
 */
68
69
9.06k
#define DC_STAT_BINS  64
70
3.00k
#define AC_STAT_BINS  256
71
72
73
LOCAL(int)
74
get_byte(j_decompress_ptr cinfo)
75
/* Read next input byte; we do not support suspension in this module. */
76
384k
{
77
384k
  struct jpeg_source_mgr *src = cinfo->src;
78
79
384k
  if (src->bytes_in_buffer == 0)
80
247
    if (!(*src->fill_input_buffer) (cinfo))
81
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
82
384k
  src->bytes_in_buffer--;
83
384k
  return *src->next_input_byte++;
84
384k
}
85
86
87
/*
88
 * The core arithmetic decoding routine (common in JPEG and JBIG).
89
 * This needs to go as fast as possible.
90
 * Machine-dependent optimization facilities
91
 * are not utilized in this portable implementation.
92
 * However, this code should be fairly efficient and
93
 * may be a good base for further optimizations anyway.
94
 *
95
 * Return value is 0 or 1 (binary decision).
96
 *
97
 * Note: I've changed the handling of the code base & bit
98
 * buffer register C compared to other implementations
99
 * based on the standards layout & procedures.
100
 * While it also contains both the actual base of the
101
 * coding interval (16 bits) and the next-bits buffer,
102
 * the cut-point between these two parts is floating
103
 * (instead of fixed) with the bit shift counter CT.
104
 * Thus, we also need only one (variable instead of
105
 * fixed size) shift for the LPS/MPS decision, and
106
 * we can do away with any renormalization update
107
 * of C (except for new data insertion, of course).
108
 *
109
 * I've also introduced a new scheme for accessing
110
 * the probability estimation state machine table,
111
 * derived from Markus Kuhn's JBIG implementation.
112
 */
113
114
LOCAL(int)
115
arith_decode(j_decompress_ptr cinfo, unsigned char *st)
116
223M
{
117
223M
  register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
118
223M
  register unsigned char nl, nm;
119
223M
  register JLONG qe, temp;
120
223M
  register int sv, data;
121
122
  /* Renormalization & data input per section D.2.6 */
123
266M
  while (e->a < 0x8000L) {
124
43.5M
    if (--e->ct < 0) {
125
      /* Need to fetch next data byte */
126
5.45M
      if (cinfo->unread_marker)
127
5.07M
        data = 0;               /* stuff zero data */
128
377k
      else {
129
377k
        data = get_byte(cinfo); /* read next input byte */
130
377k
        if (data == 0xFF) {     /* zero stuff or marker code */
131
6.80k
          do data = get_byte(cinfo);
132
6.80k
          while (data == 0xFF); /* swallow extra 0xFF bytes */
133
3.38k
          if (data == 0)
134
685
            data = 0xFF;        /* discard stuffed zero byte */
135
2.70k
          else {
136
            /* Note: Different from the Huffman decoder, hitting
137
             * a marker while processing the compressed data
138
             * segment is legal in arithmetic coding.
139
             * The convention is to supply zero data
140
             * then until decoding is complete.
141
             */
142
2.70k
            cinfo->unread_marker = data;
143
2.70k
            data = 0;
144
2.70k
          }
145
3.38k
        }
146
377k
      }
147
5.45M
      e->c = (e->c << 8) | data; /* insert data into C register */
148
5.45M
      if ((e->ct += 8) < 0)      /* update bit shift counter */
149
        /* Need more initial bytes */
150
6.05k
        if (++e->ct == 0)
151
          /* Got 2 initial bytes -> re-init A and exit loop */
152
3.02k
          e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
153
5.45M
    }
154
43.5M
    e->a <<= 1;
155
43.5M
  }
156
157
  /* Fetch values from our compact representation of Table D.2:
158
   * Qe values and probability estimation state machine
159
   */
160
223M
  sv = *st;
161
223M
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
162
223M
  nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */
163
223M
  nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */
164
165
  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
166
223M
  temp = e->a - qe;
167
223M
  e->a = temp;
168
223M
  temp <<= e->ct;
169
223M
  if (e->c >= temp) {
170
11.0M
    e->c -= temp;
171
    /* Conditional LPS (less probable symbol) exchange */
172
11.0M
    if (e->a < qe) {
173
3.12M
      e->a = qe;
174
3.12M
      *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
175
7.94M
    } else {
176
7.94M
      e->a = qe;
177
7.94M
      *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
178
7.94M
      sv ^= 0x80;               /* Exchange LPS/MPS */
179
7.94M
    }
180
212M
  } else if (e->a < 0x8000L) {
181
    /* Conditional MPS (more probable symbol) exchange */
182
20.7M
    if (e->a < qe) {
183
8.89M
      *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
184
8.89M
      sv ^= 0x80;               /* Exchange LPS/MPS */
185
11.8M
    } else {
186
11.8M
      *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
187
11.8M
    }
188
20.7M
  }
189
190
223M
  return sv >> 7;
191
223M
}
192
193
194
/*
195
 * Check for a restart marker & resynchronize decoder.
196
 */
197
198
LOCAL(void)
199
process_restart(j_decompress_ptr cinfo)
200
17
{
201
17
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
202
17
  int ci;
203
17
  jpeg_component_info *compptr;
204
205
  /* Advance past the RSTn marker */
206
17
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
207
0
    ERREXIT(cinfo, JERR_CANT_SUSPEND);
208
209
  /* Re-initialize statistics areas */
210
27
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
211
10
    compptr = cinfo->cur_comp_info[ci];
212
10
    if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
213
10
      memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
214
      /* Reset DC predictions to 0 */
215
10
      entropy->last_dc_val[ci] = 0;
216
10
      entropy->dc_context[ci] = 0;
217
10
    }
218
10
    if (!cinfo->progressive_mode || cinfo->Ss) {
219
10
      memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
220
10
    }
221
10
  }
222
223
  /* Reset arithmetic decoding variables */
224
17
  entropy->c = 0;
225
17
  entropy->a = 0;
226
17
  entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
227
228
  /* Reset restart counter */
229
17
  entropy->restarts_to_go = cinfo->restart_interval;
230
17
}
231
232
233
/*
234
 * Arithmetic MCU decoding.
235
 * Each of these routines decodes and returns one MCU's worth of
236
 * arithmetic-compressed coefficients.
237
 * The coefficients are reordered from zigzag order into natural array order,
238
 * but are not dequantized.
239
 *
240
 * The i'th block of the MCU is stored into the block pointed to by
241
 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
242
 */
243
244
/*
245
 * MCU decoding for DC initial scan (either spectral selection,
246
 * or first pass of successive approximation).
247
 */
248
249
METHODDEF(boolean)
250
decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
251
6.96M
{
252
6.96M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
253
6.96M
  JBLOCKROW block;
254
6.96M
  unsigned char *st;
255
6.96M
  int blkn, ci, tbl, sign;
256
6.96M
  int v, m;
257
258
  /* Process restart marker if needed */
259
6.96M
  if (cinfo->restart_interval) {
260
0
    if (entropy->restarts_to_go == 0)
261
0
      process_restart(cinfo);
262
0
    entropy->restarts_to_go--;
263
0
  }
264
265
6.96M
  if (entropy->ct == -1) return TRUE;   /* if error do nothing */
266
267
  /* Outer loop handles each block in the MCU */
268
269
33.2M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
270
26.2M
    block = MCU_data[blkn];
271
26.2M
    ci = cinfo->MCU_membership[blkn];
272
26.2M
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
273
274
    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
275
276
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
277
26.2M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
278
279
    /* Figure F.19: Decode_DC_DIFF */
280
26.2M
    if (arith_decode(cinfo, st) == 0)
281
15.3M
      entropy->dc_context[ci] = 0;
282
10.9M
    else {
283
      /* Figure F.21: Decoding nonzero value v */
284
      /* Figure F.22: Decoding the sign of v */
285
10.9M
      sign = arith_decode(cinfo, st + 1);
286
10.9M
      st += 2;  st += sign;
287
      /* Figure F.23: Decoding the magnitude category of v */
288
10.9M
      if ((m = arith_decode(cinfo, st)) != 0) {
289
5.70M
        st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
290
13.5M
        while (arith_decode(cinfo, st)) {
291
7.81M
          if ((m <<= 1) == 0x8000) {
292
23
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
293
23
            entropy->ct = -1;                   /* magnitude overflow */
294
23
            return TRUE;
295
23
          }
296
7.81M
          st += 1;
297
7.81M
        }
298
5.70M
      }
299
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
300
10.9M
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
301
0
        entropy->dc_context[ci] = 0;               /* zero diff category */
302
10.9M
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
303
3.25M
        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
304
7.69M
      else
305
7.69M
        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
306
10.9M
      v = m;
307
      /* Figure F.24: Decoding the magnitude bit pattern of v */
308
10.9M
      st += 14;
309
18.7M
      while (m >>= 1)
310
7.81M
        if (arith_decode(cinfo, st)) v |= m;
311
10.9M
      v += 1;  if (sign) v = -v;
312
10.9M
      entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff;
313
10.9M
    }
314
315
    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
316
26.2M
    (*block)[0] = (JCOEF)LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
317
26.2M
  }
318
319
6.96M
  return TRUE;
320
6.96M
}
321
322
323
/*
324
 * MCU decoding for AC initial scan (either spectral selection,
325
 * or first pass of successive approximation).
326
 */
327
328
METHODDEF(boolean)
329
decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
330
5.13M
{
331
5.13M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
332
5.13M
  JBLOCKROW block;
333
5.13M
  unsigned char *st;
334
5.13M
  int tbl, sign, k;
335
5.13M
  int v, m;
336
337
  /* Process restart marker if needed */
338
5.13M
  if (cinfo->restart_interval) {
339
0
    if (entropy->restarts_to_go == 0)
340
0
      process_restart(cinfo);
341
0
    entropy->restarts_to_go--;
342
0
  }
343
344
5.13M
  if (entropy->ct == -1) return TRUE;   /* if error do nothing */
345
346
  /* There is always only one block per MCU */
347
5.13M
  block = MCU_data[0];
348
5.13M
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
349
350
  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
351
352
  /* Figure F.20: Decode_AC_coefficients */
353
13.0M
  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
354
13.0M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
355
13.0M
    if (arith_decode(cinfo, st)) break;         /* EOB flag */
356
18.1M
    while (arith_decode(cinfo, st + 1) == 0) {
357
10.2M
      st += 3;  k++;
358
10.2M
      if (k > cinfo->Se) {
359
36
        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
360
36
        entropy->ct = -1;                       /* spectral overflow */
361
36
        return TRUE;
362
36
      }
363
10.2M
    }
364
    /* Figure F.21: Decoding nonzero value v */
365
    /* Figure F.22: Decoding the sign of v */
366
7.90M
    sign = arith_decode(cinfo, entropy->fixed_bin);
367
7.90M
    st += 2;
368
    /* Figure F.23: Decoding the magnitude category of v */
369
7.90M
    if ((m = arith_decode(cinfo, st)) != 0) {
370
4.31M
      if (arith_decode(cinfo, st)) {
371
3.83M
        m <<= 1;
372
3.83M
        st = entropy->ac_stats[tbl] +
373
3.83M
             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
374
9.61M
        while (arith_decode(cinfo, st)) {
375
5.77M
          if ((m <<= 1) == 0x8000) {
376
13
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
377
13
            entropy->ct = -1;                   /* magnitude overflow */
378
13
            return TRUE;
379
13
          }
380
5.77M
          st += 1;
381
5.77M
        }
382
3.83M
      }
383
4.31M
    }
384
7.90M
    v = m;
385
    /* Figure F.24: Decoding the magnitude bit pattern of v */
386
7.90M
    st += 14;
387
17.5M
    while (m >>= 1)
388
9.61M
      if (arith_decode(cinfo, st)) v |= m;
389
7.90M
    v += 1;  if (sign) v = -v;
390
    /* Scale and output coefficient in natural (dezigzagged) order */
391
7.90M
    (*block)[jpeg_natural_order[k]] = (JCOEF)((unsigned)v << cinfo->Al);
392
7.90M
  }
393
394
5.13M
  return TRUE;
395
5.13M
}
396
397
398
/*
399
 * MCU decoding for DC successive approximation refinement scan.
400
 */
401
402
METHODDEF(boolean)
403
decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
404
156k
{
405
156k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
406
156k
  unsigned char *st;
407
156k
  int p1, blkn;
408
409
  /* Process restart marker if needed */
410
156k
  if (cinfo->restart_interval) {
411
0
    if (entropy->restarts_to_go == 0)
412
0
      process_restart(cinfo);
413
0
    entropy->restarts_to_go--;
414
0
  }
415
416
156k
  st = entropy->fixed_bin;      /* use fixed probability estimation */
417
156k
  p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
418
419
  /* Outer loop handles each block in the MCU */
420
421
622k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
422
    /* Encoded data is simply the next bit of the two's-complement DC value */
423
465k
    if (arith_decode(cinfo, st))
424
233k
      MCU_data[blkn][0][0] |= p1;
425
465k
  }
426
427
156k
  return TRUE;
428
156k
}
429
430
431
/*
432
 * MCU decoding for AC successive approximation refinement scan.
433
 */
434
435
METHODDEF(boolean)
436
decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
437
196k
{
438
196k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
439
196k
  JBLOCKROW block;
440
196k
  JCOEFPTR thiscoef;
441
196k
  unsigned char *st;
442
196k
  int tbl, k, kex;
443
196k
  int p1, m1;
444
445
  /* Process restart marker if needed */
446
196k
  if (cinfo->restart_interval) {
447
0
    if (entropy->restarts_to_go == 0)
448
0
      process_restart(cinfo);
449
0
    entropy->restarts_to_go--;
450
0
  }
451
452
196k
  if (entropy->ct == -1) return TRUE;   /* if error do nothing */
453
454
  /* There is always only one block per MCU */
455
196k
  block = MCU_data[0];
456
196k
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
457
458
196k
  p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
459
196k
  m1 = (NEG_1) << cinfo->Al;    /* -1 in the bit position being coded */
460
461
  /* Establish EOBx (previous stage end-of-block) index */
462
11.6M
  for (kex = cinfo->Se; kex > 0; kex--)
463
11.6M
    if ((*block)[jpeg_natural_order[kex]]) break;
464
465
1.02M
  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
466
1.02M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
467
1.02M
    if (k > kex)
468
413k
      if (arith_decode(cinfo, st)) break;       /* EOB flag */
469
1.22M
    for (;;) {
470
1.22M
      thiscoef = *block + jpeg_natural_order[k];
471
1.22M
      if (*thiscoef) {                          /* previously nonzero coef */
472
454k
        if (arith_decode(cinfo, st + 2)) {
473
248k
          if (*thiscoef < 0)
474
113k
            *thiscoef += (JCOEF)m1;
475
135k
          else
476
135k
            *thiscoef += (JCOEF)p1;
477
248k
        }
478
454k
        break;
479
454k
      }
480
772k
      if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
481
371k
        if (arith_decode(cinfo, entropy->fixed_bin))
482
170k
          *thiscoef = (JCOEF)m1;
483
200k
        else
484
200k
          *thiscoef = (JCOEF)p1;
485
371k
        break;
486
371k
      }
487
401k
      st += 3;  k++;
488
401k
      if (k > cinfo->Se) {
489
10
        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
490
10
        entropy->ct = -1;                       /* spectral overflow */
491
10
        return TRUE;
492
10
      }
493
401k
    }
494
825k
  }
495
496
196k
  return TRUE;
497
196k
}
498
499
500
/*
501
 * Decode one MCU's worth of arithmetic-compressed coefficients.
502
 */
503
504
METHODDEF(boolean)
505
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
506
718k
{
507
718k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
508
718k
  jpeg_component_info *compptr;
509
718k
  JBLOCKROW block;
510
718k
  unsigned char *st;
511
718k
  int blkn, ci, tbl, sign, k;
512
718k
  int v, m;
513
514
  /* Process restart marker if needed */
515
718k
  if (cinfo->restart_interval) {
516
2.69k
    if (entropy->restarts_to_go == 0)
517
17
      process_restart(cinfo);
518
2.69k
    entropy->restarts_to_go--;
519
2.69k
  }
520
521
718k
  if (entropy->ct == -1) return TRUE;   /* if error do nothing */
522
523
  /* Outer loop handles each block in the MCU */
524
525
4.18M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
526
3.47M
    block = MCU_data ? MCU_data[blkn] : NULL;
527
3.47M
    ci = cinfo->MCU_membership[blkn];
528
3.47M
    compptr = cinfo->cur_comp_info[ci];
529
530
    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
531
532
3.47M
    tbl = compptr->dc_tbl_no;
533
534
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
535
3.47M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
536
537
    /* Figure F.19: Decode_DC_DIFF */
538
3.47M
    if (arith_decode(cinfo, st) == 0)
539
1.60M
      entropy->dc_context[ci] = 0;
540
1.86M
    else {
541
      /* Figure F.21: Decoding nonzero value v */
542
      /* Figure F.22: Decoding the sign of v */
543
1.86M
      sign = arith_decode(cinfo, st + 1);
544
1.86M
      st += 2;  st += sign;
545
      /* Figure F.23: Decoding the magnitude category of v */
546
1.86M
      if ((m = arith_decode(cinfo, st)) != 0) {
547
1.08M
        st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
548
2.72M
        while (arith_decode(cinfo, st)) {
549
1.63M
          if ((m <<= 1) == 0x8000) {
550
8
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
551
8
            entropy->ct = -1;                   /* magnitude overflow */
552
8
            return TRUE;
553
8
          }
554
1.63M
          st += 1;
555
1.63M
        }
556
1.08M
      }
557
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
558
1.86M
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
559
0
        entropy->dc_context[ci] = 0;               /* zero diff category */
560
1.86M
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
561
908k
        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
562
956k
      else
563
956k
        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
564
1.86M
      v = m;
565
      /* Figure F.24: Decoding the magnitude bit pattern of v */
566
1.86M
      st += 14;
567
3.50M
      while (m >>= 1)
568
1.63M
        if (arith_decode(cinfo, st)) v |= m;
569
1.86M
      v += 1;  if (sign) v = -v;
570
1.86M
      entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff;
571
1.86M
    }
572
573
3.47M
    if (block)
574
3.47M
      (*block)[0] = (JCOEF)entropy->last_dc_val[ci];
575
576
    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
577
578
3.47M
    tbl = compptr->ac_tbl_no;
579
580
    /* Figure F.20: Decode_AC_coefficients */
581
11.3M
    for (k = 1; k <= DCTSIZE2 - 1; k++) {
582
11.3M
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
583
11.3M
      if (arith_decode(cinfo, st)) break;       /* EOB flag */
584
22.7M
      while (arith_decode(cinfo, st + 1) == 0) {
585
14.9M
        st += 3;  k++;
586
14.9M
        if (k > DCTSIZE2 - 1) {
587
1
          WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
588
1
          entropy->ct = -1;                     /* spectral overflow */
589
1
          return TRUE;
590
1
        }
591
14.9M
      }
592
      /* Figure F.21: Decoding nonzero value v */
593
      /* Figure F.22: Decoding the sign of v */
594
7.88M
      sign = arith_decode(cinfo, entropy->fixed_bin);
595
7.88M
      st += 2;
596
      /* Figure F.23: Decoding the magnitude category of v */
597
7.88M
      if ((m = arith_decode(cinfo, st)) != 0) {
598
3.90M
        if (arith_decode(cinfo, st)) {
599
3.70M
          m <<= 1;
600
3.70M
          st = entropy->ac_stats[tbl] +
601
3.70M
               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
602
7.65M
          while (arith_decode(cinfo, st)) {
603
3.94M
            if ((m <<= 1) == 0x8000) {
604
9
              WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
605
9
              entropy->ct = -1;                 /* magnitude overflow */
606
9
              return TRUE;
607
9
            }
608
3.94M
            st += 1;
609
3.94M
          }
610
3.70M
        }
611
3.90M
      }
612
7.88M
      v = m;
613
      /* Figure F.24: Decoding the magnitude bit pattern of v */
614
7.88M
      st += 14;
615
15.5M
      while (m >>= 1)
616
7.65M
        if (arith_decode(cinfo, st)) v |= m;
617
7.88M
      v += 1;  if (sign) v = -v;
618
7.88M
      if (block)
619
7.88M
        (*block)[jpeg_natural_order[k]] = (JCOEF)v;
620
7.88M
    }
621
3.47M
  }
622
623
718k
  return TRUE;
624
718k
}
625
626
627
/*
628
 * Initialize for an arithmetic-compressed scan.
629
 */
630
631
METHODDEF(void)
632
start_pass(j_decompress_ptr cinfo)
633
3.10k
{
634
3.10k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
635
3.10k
  int ci, tbl;
636
3.10k
  jpeg_component_info *compptr;
637
638
3.10k
  if (cinfo->progressive_mode) {
639
    /* Validate progressive scan parameters */
640
2.72k
    if (cinfo->Ss == 0) {
641
1.82k
      if (cinfo->Se != 0)
642
6
        goto bad;
643
1.82k
    } else {
644
      /* need not check Ss/Se < 0 since they came from unsigned bytes */
645
909
      if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
646
24
        goto bad;
647
      /* AC scans may have only one component */
648
885
      if (cinfo->comps_in_scan != 1)
649
3
        goto bad;
650
885
    }
651
2.69k
    if (cinfo->Ah != 0) {
652
      /* Successive approximation refinement scan: must have Al = Ah-1. */
653
195
      if (cinfo->Ah - 1 != cinfo->Al)
654
5
        goto bad;
655
195
    }
656
2.69k
    if (cinfo->Al > 13) {       /* need not check for < 0 */
657
39
bad:
658
39
      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
659
39
               cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
660
39
    }
661
    /* Update progression status, and verify that scan order is legal.
662
     * Note that inter-scan inconsistencies are treated as warnings
663
     * not fatal errors ... not clear if this is right way to behave.
664
     */
665
9.30k
    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
666
6.57k
      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
667
6.57k
      int *coef_bit_ptr = &cinfo->coef_bits[cindex][0];
668
6.57k
      int *prev_coef_bit_ptr =
669
6.57k
        &cinfo->coef_bits[cindex + cinfo->num_components][0];
670
6.57k
      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
671
1
        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
672
115k
      for (coefi = MIN(cinfo->Ss, 1); coefi <= MAX(cinfo->Se, 9); coefi++) {
673
109k
        if (cinfo->input_scan_number > 1)
674
73.4k
          prev_coef_bit_ptr[coefi] = coef_bit_ptr[coefi];
675
35.9k
        else
676
35.9k
          prev_coef_bit_ptr[coefi] = 0;
677
109k
      }
678
61.9k
      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
679
55.4k
        int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
680
55.4k
        if (cinfo->Ah != expected)
681
16
          WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
682
55.4k
        coef_bit_ptr[coefi] = cinfo->Al;
683
55.4k
      }
684
6.57k
    }
685
    /* Select MCU decoding routine */
686
2.72k
    if (cinfo->Ah == 0) {
687
2.49k
      if (cinfo->Ss == 0)
688
1.71k
        entropy->pub.decode_mcu = decode_mcu_DC_first;
689
775
      else
690
775
        entropy->pub.decode_mcu = decode_mcu_AC_first;
691
2.49k
    } else {
692
239
      if (cinfo->Ss == 0)
693
84
        entropy->pub.decode_mcu = decode_mcu_DC_refine;
694
155
      else
695
155
        entropy->pub.decode_mcu = decode_mcu_AC_refine;
696
239
    }
697
2.72k
  } else {
698
    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
699
     * This ought to be an error condition, but we make it a warning.
700
     */
701
375
    if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
702
375
        cinfo->Ah != 0 || cinfo->Al != 0)
703
23
      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
704
    /* Select MCU decoding routine */
705
375
    entropy->pub.decode_mcu = decode_mcu;
706
375
  }
707
708
  /* Allocate & initialize requested statistics areas */
709
10.8k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
710
7.71k
    compptr = cinfo->cur_comp_info[ci];
711
7.71k
    if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
712
6.58k
      tbl = compptr->dc_tbl_no;
713
6.58k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
714
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
715
6.58k
      if (entropy->dc_stats[tbl] == NULL)
716
2.46k
        entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
717
2.46k
          ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
718
6.58k
      memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
719
      /* Initialize DC predictions to 0 */
720
6.58k
      entropy->last_dc_val[ci] = 0;
721
6.58k
      entropy->dc_context[ci] = 0;
722
6.58k
    }
723
7.71k
    if (!cinfo->progressive_mode || cinfo->Ss) {
724
2.02k
      tbl = compptr->ac_tbl_no;
725
2.02k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
726
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
727
2.02k
      if (entropy->ac_stats[tbl] == NULL)
728
967
        entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
729
967
          ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
730
2.02k
      memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
731
2.02k
    }
732
7.71k
  }
733
734
  /* Initialize arithmetic decoding variables */
735
3.10k
  entropy->c = 0;
736
3.10k
  entropy->a = 0;
737
3.10k
  entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
738
3.10k
  entropy->pub.insufficient_data = FALSE;
739
740
  /* Initialize restart counter */
741
3.10k
  entropy->restarts_to_go = cinfo->restart_interval;
742
3.10k
}
743
744
745
/*
746
 * Module initialization routine for arithmetic entropy decoding.
747
 */
748
749
GLOBAL(void)
750
jinit_arith_decoder(j_decompress_ptr cinfo)
751
1.58k
{
752
1.58k
  arith_entropy_ptr entropy;
753
1.58k
  int i;
754
755
1.58k
  entropy = (arith_entropy_ptr)
756
1.58k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
757
1.58k
                                sizeof(arith_entropy_decoder));
758
1.58k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
759
1.58k
  entropy->pub.start_pass = start_pass;
760
761
  /* Mark tables unallocated */
762
26.9k
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
763
25.3k
    entropy->dc_stats[i] = NULL;
764
25.3k
    entropy->ac_stats[i] = NULL;
765
25.3k
  }
766
767
  /* Initialize index for fixed probability estimation */
768
1.58k
  entropy->fixed_bin[0] = 113;
769
770
1.58k
  if (cinfo->progressive_mode) {
771
    /* Create progression status table */
772
1.19k
    int *coef_bit_ptr, ci;
773
1.19k
    cinfo->coef_bits = (int (*)[DCTSIZE2])
774
1.19k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
775
1.19k
                                  cinfo->num_components * 2 * DCTSIZE2 *
776
1.19k
                                  sizeof(int));
777
1.19k
    coef_bit_ptr = &cinfo->coef_bits[0][0];
778
4.93k
    for (ci = 0; ci < cinfo->num_components; ci++)
779
243k
      for (i = 0; i < DCTSIZE2; i++)
780
239k
        *coef_bit_ptr++ = -1;
781
1.19k
  }
782
1.58k
}