Coverage Report

Created: 2025-07-18 06:59

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.34k
{
81
1.34k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.34k
  int ci, blkn, dctbl, actbl;
83
1.34k
  d_derived_tbl **pdtbl;
84
1.34k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.34k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.34k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
16
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
2.99k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
1.65k
    compptr = cinfo->cur_comp_info[ci];
96
1.65k
    dctbl = compptr->dc_tbl_no;
97
1.65k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
1.65k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
1.65k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
1.65k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
1.65k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
1.65k
    entropy->saved.last_dc_val[ci] = 0;
106
1.65k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
4.99k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
3.65k
    ci = cinfo->MCU_membership[blkn];
111
3.65k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
3.65k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
3.65k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
3.65k
    if (compptr->component_needed) {
117
3.65k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
3.65k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
3.65k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
3.65k
  }
124
125
  /* Initialize bitread state variables */
126
1.34k
  entropy->bitstate.bits_left = 0;
127
1.34k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.34k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.34k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.34k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
14.1k
{
146
14.1k
  JHUFF_TBL *htbl;
147
14.1k
  d_derived_tbl *dtbl;
148
14.1k
  int p, i, l, si, numsymbols;
149
14.1k
  int lookbits, ctr;
150
14.1k
  char huffsize[257];
151
14.1k
  unsigned int huffcode[257];
152
14.1k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
14.1k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
8
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
14.1k
  htbl =
162
14.1k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
14.1k
  if (htbl == NULL)
164
13
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
14.1k
  if (*pdtbl == NULL)
168
5.29k
    *pdtbl = (d_derived_tbl *)
169
5.29k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.29k
                                  sizeof(d_derived_tbl));
171
14.1k
  dtbl = *pdtbl;
172
14.1k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
14.1k
  p = 0;
177
239k
  for (l = 1; l <= 16; l++) {
178
225k
    i = (int)htbl->bits[l];
179
225k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
574k
    while (i--)
182
348k
      huffsize[p++] = (char)l;
183
225k
  }
184
14.1k
  huffsize[p] = 0;
185
14.1k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
14.1k
  code = 0;
191
14.1k
  si = huffsize[0];
192
14.1k
  p = 0;
193
135k
  while (huffsize[p]) {
194
468k
    while (((int)huffsize[p]) == si) {
195
347k
      huffcode[p++] = code;
196
347k
      code++;
197
347k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
121k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
23
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
121k
    code <<= 1;
204
121k
    si++;
205
121k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
14.1k
  p = 0;
210
238k
  for (l = 1; l <= 16; l++) {
211
224k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
86.9k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
86.9k
      p += htbl->bits[l];
217
86.9k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
137k
    } else {
219
137k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
137k
    }
221
224k
  }
222
14.1k
  dtbl->valoffset[17] = 0;
223
14.1k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
3.61M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
3.59M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
14.1k
  p = 0;
236
126k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
211k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
99.3k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.96M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.86M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.86M
        lookbits++;
244
2.86M
      }
245
99.3k
    }
246
112k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
14.1k
  if (isDC) {
255
99.6k
    for (i = 0; i < numsymbols; i++) {
256
88.1k
      int sym = htbl->huffval[i];
257
88.1k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
32
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
88.1k
    }
260
11.5k
  }
261
14.1k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
3.64M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
476k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
476k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
476k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
476k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
476k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
3.64M
    while (bits_left < MIN_GET_BITS) {
303
3.19M
      register int c;
304
305
      /* Attempt to read a byte */
306
3.19M
      if (bytes_in_buffer == 0) {
307
1.06k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.06k
        next_input_byte = cinfo->src->next_input_byte;
310
1.06k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.06k
      }
312
3.19M
      bytes_in_buffer--;
313
3.19M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
3.19M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
49.7k
        do {
323
49.7k
          if (bytes_in_buffer == 0) {
324
62
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
62
            next_input_byte = cinfo->src->next_input_byte;
327
62
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
62
          }
329
49.7k
          bytes_in_buffer--;
330
49.7k
          c = *next_input_byte++;
331
49.7k
        } while (c == 0xFF);
332
333
23.3k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
16.3k
          c = 0xFF;
336
16.3k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
7.02k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
7.02k
          goto no_more_bytes;
348
7.02k
        }
349
23.3k
      }
350
351
      /* OK, load c into get_buffer */
352
3.18M
      get_buffer = (get_buffer << 8) | c;
353
3.18M
      bits_left += 8;
354
3.18M
    } /* end while */
355
453k
  } else {
356
29.7k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
29.7k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.89k
      if (!cinfo->entropy->insufficient_data) {
368
1.89k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
1.89k
        cinfo->entropy->insufficient_data = TRUE;
370
1.89k
      }
371
      /* Fill the buffer with zero bits */
372
1.89k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.89k
      bits_left = MIN_GET_BITS;
374
1.89k
    }
375
29.7k
  }
376
377
  /* Unload the local registers */
378
476k
  state->next_input_byte = next_input_byte;
379
476k
  state->bytes_in_buffer = bytes_in_buffer;
380
476k
  state->get_buffer = get_buffer;
381
476k
  state->bits_left = bits_left;
382
383
476k
  return TRUE;
384
476k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
598k
#define GET_BYTE { \
392
598k
  register int c0, c1; \
393
598k
  c0 = *buffer++; \
394
598k
  c1 = *buffer; \
395
598k
  /* Pre-execute most common case */ \
396
598k
  get_buffer = (get_buffer << 8) | c0; \
397
598k
  bits_left += 8; \
398
598k
  if (c0 == 0xFF) { \
399
86.2k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
86.2k
    buffer++; \
401
86.2k
    if (c1 != 0) { \
402
66.6k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
66.6k
      cinfo->unread_marker = c1; \
404
66.6k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
66.6k
      buffer -= 2; \
406
66.6k
      get_buffer &= ~0xFF; \
407
66.6k
    } \
408
86.2k
  } \
409
598k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.22M
  if (bits_left <= 16) { \
416
99.7k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
99.7k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
40.7k
{
440
40.7k
  register int l = min_bits;
441
40.7k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
40.7k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
40.7k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
83.4k
  while (code > htbl->maxcode[l]) {
453
42.6k
    code <<= 1;
454
42.6k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
42.6k
    code |= GET_BITS(1);
456
42.6k
    l++;
457
42.6k
  }
458
459
  /* Unload the local registers */
460
40.7k
  state->get_buffer = get_buffer;
461
40.7k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
40.7k
  if (l > 16) {
466
383
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
383
    return 0;                   /* fake a zero as the safest result */
468
383
  }
469
470
40.3k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
40.7k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.05M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.05M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
29
{
514
29
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
29
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
29
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
29
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
29
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
111
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
82
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
29
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
29
  if (cinfo->unread_marker == 0)
539
28
    entropy->pub.insufficient_data = FALSE;
540
541
29
  return TRUE;
542
29
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
46.3k
{
554
46.3k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
46.3k
  BITREAD_STATE_VARS;
556
46.3k
  int blkn;
557
46.3k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
46.3k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
46.3k
  state = entropy->saved;
563
564
97.8k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
51.7k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
51.7k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
51.7k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
51.7k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
51.7k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
51.6k
    if (s) {
575
13.3k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
13.3k
      r = GET_BITS(s);
577
13.3k
      s = HUFF_EXTEND(r, s);
578
13.3k
    }
579
580
51.6k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
51.3k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
51.3k
      s += state.last_dc_val[ci];
592
51.3k
      state.last_dc_val[ci] = s;
593
51.3k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
51.3k
        (*block)[0] = (JCOEF)s;
596
51.3k
      }
597
51.3k
    }
598
599
51.6k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
127k
      for (k = 1; k < DCTSIZE2; k++) {
604
124k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
124k
        r = s >> 4;
607
124k
        s &= 15;
608
609
124k
        if (s) {
610
70.2k
          k += r;
611
70.2k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
70.2k
          r = GET_BITS(s);
613
70.2k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
70.2k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
70.2k
        } else {
620
53.8k
          if (r != 15)
621
48.4k
            break;
622
5.35k
          k += 15;
623
5.35k
        }
624
124k
      }
625
626
51.3k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
264
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
264
    }
647
51.6k
  }
648
649
  /* Completed MCU, so update state */
650
46.1k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
46.1k
  entropy->saved = state;
652
46.1k
  return TRUE;
653
46.3k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
165k
{
665
165k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
165k
  BITREAD_STATE_VARS;
667
165k
  JOCTET *buffer;
668
165k
  int blkn;
669
165k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
165k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
165k
  buffer = (JOCTET *)br_state.next_input_byte;
675
165k
  state = entropy->saved;
676
677
331k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
165k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
165k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
165k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
165k
    register int s, k, r, l;
682
683
165k
    HUFF_DECODE_FAST(s, l, dctbl);
684
165k
    if (s) {
685
40.3k
      FILL_BIT_BUFFER_FAST
686
40.3k
      r = GET_BITS(s);
687
40.3k
      s = HUFF_EXTEND(r, s);
688
40.3k
    }
689
690
165k
    if (entropy->dc_needed[blkn]) {
691
165k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
165k
      s += state.last_dc_val[ci];
696
165k
      state.last_dc_val[ci] = s;
697
165k
      if (block)
698
165k
        (*block)[0] = (JCOEF)s;
699
165k
    }
700
701
165k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.10M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.08M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.08M
        r = s >> 4;
706
1.08M
        s &= 15;
707
708
1.08M
        if (s) {
709
930k
          k += r;
710
930k
          FILL_BIT_BUFFER_FAST
711
930k
          r = GET_BITS(s);
712
930k
          s = HUFF_EXTEND(r, s);
713
930k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
930k
        } else {
715
159k
          if (r != 15) break;
716
10.3k
          k += 15;
717
10.3k
        }
718
1.08M
      }
719
720
165k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
165k
  }
738
739
165k
  if (cinfo->unread_marker != 0) {
740
13.7k
    cinfo->unread_marker = 0;
741
13.7k
    return FALSE;
742
13.7k
  }
743
744
151k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
151k
  br_state.next_input_byte = buffer;
746
151k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
151k
  entropy->saved = state;
748
151k
  return TRUE;
749
165k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
197k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
197k
{
772
197k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
197k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
197k
  if (cinfo->restart_interval) {
777
5.28k
    if (entropy->restarts_to_go == 0)
778
29
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
5.28k
    usefast = 0;
781
5.28k
  }
782
783
197k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
197k
      cinfo->unread_marker != 0)
785
30.3k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
197k
  if (!entropy->pub.insufficient_data) {
791
792
197k
    if (usefast) {
793
165k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
165k
    } else {
795
46.3k
use_slow:
796
46.3k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
46.3k
    }
798
799
197k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
197k
  if (cinfo->restart_interval)
803
5.24k
    entropy->restarts_to_go--;
804
805
197k
  return TRUE;
806
197k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
947
{
816
947
  huff_entropy_ptr entropy;
817
947
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
947
  std_huff_tables((j_common_ptr)cinfo);
824
825
947
  entropy = (huff_entropy_ptr)
826
947
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
947
                                sizeof(huff_entropy_decoder));
828
947
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
947
  entropy->pub.start_pass = start_pass_huff_decoder;
830
947
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
4.73k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.78k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.78k
  }
836
947
}