Coverage Report

Created: 2025-08-26 07:07

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.45k
{
81
1.45k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.45k
  int ci, blkn, dctbl, actbl;
83
1.45k
  d_derived_tbl **pdtbl;
84
1.45k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.45k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.45k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
17
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
3.19k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
1.73k
    compptr = cinfo->cur_comp_info[ci];
96
1.73k
    dctbl = compptr->dc_tbl_no;
97
1.73k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
1.73k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
1.73k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
1.73k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
1.73k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
1.73k
    entropy->saved.last_dc_val[ci] = 0;
106
1.73k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
3.56k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
2.11k
    ci = cinfo->MCU_membership[blkn];
111
2.11k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
2.11k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
2.11k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
2.11k
    if (compptr->component_needed) {
117
2.11k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
2.11k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
2.11k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
2.11k
  }
124
125
  /* Initialize bitread state variables */
126
1.45k
  entropy->bitstate.bits_left = 0;
127
1.45k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.45k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.45k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.45k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
12.7k
{
146
12.7k
  JHUFF_TBL *htbl;
147
12.7k
  d_derived_tbl *dtbl;
148
12.7k
  int p, i, l, si, numsymbols;
149
12.7k
  int lookbits, ctr;
150
12.7k
  char huffsize[257];
151
12.7k
  unsigned int huffcode[257];
152
12.7k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
12.7k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
10
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
12.7k
  htbl =
162
12.7k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
12.7k
  if (htbl == NULL)
164
14
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
12.7k
  if (*pdtbl == NULL)
168
5.39k
    *pdtbl = (d_derived_tbl *)
169
5.39k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.39k
                                  sizeof(d_derived_tbl));
171
12.7k
  dtbl = *pdtbl;
172
12.7k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
12.7k
  p = 0;
177
216k
  for (l = 1; l <= 16; l++) {
178
203k
    i = (int)htbl->bits[l];
179
203k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
536k
    while (i--)
182
333k
      huffsize[p++] = (char)l;
183
203k
  }
184
12.7k
  huffsize[p] = 0;
185
12.7k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
12.7k
  code = 0;
191
12.7k
  si = huffsize[0];
192
12.7k
  p = 0;
193
118k
  while (huffsize[p]) {
194
438k
    while (((int)huffsize[p]) == si) {
195
332k
      huffcode[p++] = code;
196
332k
      code++;
197
332k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
105k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
13
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
105k
    code <<= 1;
204
105k
    si++;
205
105k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
12.7k
  p = 0;
210
215k
  for (l = 1; l <= 16; l++) {
211
203k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
64.9k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
64.9k
      p += htbl->bits[l];
217
64.9k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
138k
    } else {
219
138k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
138k
    }
221
203k
  }
222
12.7k
  dtbl->valoffset[17] = 0;
223
12.7k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
3.26M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
3.24M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
12.7k
  p = 0;
236
114k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
179k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
78.0k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.50M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.42M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.42M
        lookbits++;
244
2.42M
      }
245
78.0k
    }
246
101k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
12.7k
  if (isDC) {
255
64.4k
    for (i = 0; i < numsymbols; i++) {
256
54.2k
      int sym = htbl->huffval[i];
257
54.2k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
24
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
54.2k
    }
260
10.2k
  }
261
12.7k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
5.72M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
774k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
774k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
774k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
774k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
774k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
5.71M
    while (bits_left < MIN_GET_BITS) {
303
4.97M
      register int c;
304
305
      /* Attempt to read a byte */
306
4.97M
      if (bytes_in_buffer == 0) {
307
1.15k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.15k
        next_input_byte = cinfo->src->next_input_byte;
310
1.15k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.15k
      }
312
4.97M
      bytes_in_buffer--;
313
4.97M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
4.97M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
62.3k
        do {
323
62.3k
          if (bytes_in_buffer == 0) {
324
55
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
55
            next_input_byte = cinfo->src->next_input_byte;
327
55
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
55
          }
329
62.3k
          bytes_in_buffer--;
330
62.3k
          c = *next_input_byte++;
331
62.3k
        } while (c == 0xFF);
332
333
23.0k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
15.9k
          c = 0xFF;
336
15.9k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
7.18k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
7.18k
          goto no_more_bytes;
348
7.18k
        }
349
23.0k
      }
350
351
      /* OK, load c into get_buffer */
352
4.97M
      get_buffer = (get_buffer << 8) | c;
353
4.97M
      bits_left += 8;
354
4.97M
    } /* end while */
355
747k
  } else {
356
33.8k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
33.8k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
2.14k
      if (!cinfo->entropy->insufficient_data) {
368
2.14k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
2.14k
        cinfo->entropy->insufficient_data = TRUE;
370
2.14k
      }
371
      /* Fill the buffer with zero bits */
372
2.14k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
2.14k
      bits_left = MIN_GET_BITS;
374
2.14k
    }
375
33.8k
  }
376
377
  /* Unload the local registers */
378
774k
  state->next_input_byte = next_input_byte;
379
774k
  state->bytes_in_buffer = bytes_in_buffer;
380
774k
  state->get_buffer = get_buffer;
381
774k
  state->bits_left = bits_left;
382
383
774k
  return TRUE;
384
774k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.39M
#define GET_BYTE { \
392
1.39M
  register int c0, c1; \
393
1.39M
  c0 = *buffer++; \
394
1.39M
  c1 = *buffer; \
395
1.39M
  /* Pre-execute most common case */ \
396
1.39M
  get_buffer = (get_buffer << 8) | c0; \
397
1.39M
  bits_left += 8; \
398
1.39M
  if (c0 == 0xFF) { \
399
62.8k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
62.8k
    buffer++; \
401
62.8k
    if (c1 != 0) { \
402
47.6k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
47.6k
      cinfo->unread_marker = c1; \
404
47.6k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
47.6k
      buffer -= 2; \
406
47.6k
      get_buffer &= ~0xFF; \
407
47.6k
    } \
408
62.8k
  } \
409
1.39M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
4.43M
  if (bits_left <= 16) { \
416
233k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
233k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
43.6k
{
440
43.6k
  register int l = min_bits;
441
43.6k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
43.6k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
43.6k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
81.6k
  while (code > htbl->maxcode[l]) {
453
37.9k
    code <<= 1;
454
37.9k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
37.9k
    code |= GET_BITS(1);
456
37.9k
    l++;
457
37.9k
  }
458
459
  /* Unload the local registers */
460
43.6k
  state->get_buffer = get_buffer;
461
43.6k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
43.6k
  if (l > 16) {
466
229
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
229
    return 0;                   /* fake a zero as the safest result */
468
229
  }
469
470
43.4k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
43.6k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
2.22M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
2.22M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
563
{
514
563
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
563
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
563
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
563
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
563
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
2.21k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.65k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
563
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
563
  if (cinfo->unread_marker == 0)
539
558
    entropy->pub.insufficient_data = FALSE;
540
541
563
  return TRUE;
542
563
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
47.2k
{
554
47.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
47.2k
  BITREAD_STATE_VARS;
556
47.2k
  int blkn;
557
47.2k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
47.2k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
47.2k
  state = entropy->saved;
563
564
117k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
70.2k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
70.2k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
70.2k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
70.2k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
70.2k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
70.1k
    if (s) {
575
24.6k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
24.6k
      r = GET_BITS(s);
577
24.6k
      s = HUFF_EXTEND(r, s);
578
24.6k
    }
579
580
70.1k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
69.9k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
69.9k
      s += state.last_dc_val[ci];
592
69.9k
      state.last_dc_val[ci] = s;
593
69.9k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
69.9k
        (*block)[0] = (JCOEF)s;
596
69.9k
      }
597
69.9k
    }
598
599
70.1k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
276k
      for (k = 1; k < DCTSIZE2; k++) {
604
273k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
273k
        r = s >> 4;
607
273k
        s &= 15;
608
609
273k
        if (s) {
610
203k
          k += r;
611
203k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
203k
          r = GET_BITS(s);
613
203k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
203k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
203k
        } else {
620
70.4k
          if (r != 15)
621
66.9k
            break;
622
3.45k
          k += 15;
623
3.45k
        }
624
273k
      }
625
626
69.9k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
296
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
296
    }
647
70.1k
  }
648
649
  /* Completed MCU, so update state */
650
47.1k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
47.1k
  entropy->saved = state;
652
47.1k
  return TRUE;
653
47.2k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
141k
{
665
141k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
141k
  BITREAD_STATE_VARS;
667
141k
  JOCTET *buffer;
668
141k
  int blkn;
669
141k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
141k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
141k
  buffer = (JOCTET *)br_state.next_input_byte;
675
141k
  state = entropy->saved;
676
677
423k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
282k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
282k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
282k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
282k
    register int s, k, r, l;
682
683
282k
    HUFF_DECODE_FAST(s, l, dctbl);
684
282k
    if (s) {
685
109k
      FILL_BIT_BUFFER_FAST
686
109k
      r = GET_BITS(s);
687
109k
      s = HUFF_EXTEND(r, s);
688
109k
    }
689
690
282k
    if (entropy->dc_needed[blkn]) {
691
282k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
282k
      s += state.last_dc_val[ci];
696
282k
      state.last_dc_val[ci] = s;
697
282k
      if (block)
698
282k
        (*block)[0] = (JCOEF)s;
699
282k
    }
700
701
282k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.16M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.15M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.15M
        r = s >> 4;
706
2.15M
        s &= 15;
707
708
2.15M
        if (s) {
709
1.88M
          k += r;
710
1.88M
          FILL_BIT_BUFFER_FAST
711
1.88M
          r = GET_BITS(s);
712
1.88M
          s = HUFF_EXTEND(r, s);
713
1.88M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.88M
        } else {
715
275k
          if (r != 15) break;
716
3.27k
          k += 15;
717
3.27k
        }
718
2.15M
      }
719
720
282k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
282k
  }
738
739
141k
  if (cinfo->unread_marker != 0) {
740
6.78k
    cinfo->unread_marker = 0;
741
6.78k
    return FALSE;
742
6.78k
  }
743
744
135k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
135k
  br_state.next_input_byte = buffer;
746
135k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
135k
  entropy->saved = state;
748
135k
  return TRUE;
749
141k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
182k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
182k
{
772
182k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
182k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
182k
  if (cinfo->restart_interval) {
777
12.3k
    if (entropy->restarts_to_go == 0)
778
563
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
12.3k
    usefast = 0;
781
12.3k
  }
782
783
182k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
182k
      cinfo->unread_marker != 0)
785
33.0k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
182k
  if (!entropy->pub.insufficient_data) {
791
792
182k
    if (usefast) {
793
141k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
141k
    } else {
795
47.2k
use_slow:
796
47.2k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
47.2k
    }
798
799
182k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
182k
  if (cinfo->restart_interval)
803
12.3k
    entropy->restarts_to_go--;
804
805
182k
  return TRUE;
806
182k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.01k
{
816
1.01k
  huff_entropy_ptr entropy;
817
1.01k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.01k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.01k
  entropy = (huff_entropy_ptr)
826
1.01k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.01k
                                sizeof(huff_entropy_decoder));
828
1.01k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.01k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.01k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
5.08k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
4.06k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
4.06k
  }
836
1.01k
}