Coverage Report

Created: 2025-08-26 07:07

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.29k
{
81
1.29k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.29k
  int ci, blkn, dctbl, actbl;
83
1.29k
  d_derived_tbl **pdtbl;
84
1.29k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.29k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.29k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
17
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
2.86k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
1.57k
    compptr = cinfo->cur_comp_info[ci];
96
1.57k
    dctbl = compptr->dc_tbl_no;
97
1.57k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
1.57k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
1.57k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
1.57k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
1.57k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
1.57k
    entropy->saved.last_dc_val[ci] = 0;
106
1.57k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
4.50k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
3.20k
    ci = cinfo->MCU_membership[blkn];
111
3.20k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
3.20k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
3.20k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
3.20k
    if (compptr->component_needed) {
117
3.20k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
3.20k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
3.20k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
3.20k
  }
124
125
  /* Initialize bitread state variables */
126
1.29k
  entropy->bitstate.bits_left = 0;
127
1.29k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.29k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.29k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.29k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
14.0k
{
146
14.0k
  JHUFF_TBL *htbl;
147
14.0k
  d_derived_tbl *dtbl;
148
14.0k
  int p, i, l, si, numsymbols;
149
14.0k
  int lookbits, ctr;
150
14.0k
  char huffsize[257];
151
14.0k
  unsigned int huffcode[257];
152
14.0k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
14.0k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
5
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
14.0k
  htbl =
162
14.0k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
14.0k
  if (htbl == NULL)
164
11
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
14.0k
  if (*pdtbl == NULL)
168
5.19k
    *pdtbl = (d_derived_tbl *)
169
5.19k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.19k
                                  sizeof(d_derived_tbl));
171
14.0k
  dtbl = *pdtbl;
172
14.0k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
14.0k
  p = 0;
177
239k
  for (l = 1; l <= 16; l++) {
178
225k
    i = (int)htbl->bits[l];
179
225k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
558k
    while (i--)
182
333k
      huffsize[p++] = (char)l;
183
225k
  }
184
14.0k
  huffsize[p] = 0;
185
14.0k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
14.0k
  code = 0;
191
14.0k
  si = huffsize[0];
192
14.0k
  p = 0;
193
134k
  while (huffsize[p]) {
194
452k
    while (((int)huffsize[p]) == si) {
195
331k
      huffcode[p++] = code;
196
331k
      code++;
197
331k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
120k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
22
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
120k
    code <<= 1;
204
120k
    si++;
205
120k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
14.0k
  p = 0;
210
238k
  for (l = 1; l <= 16; l++) {
211
224k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
84.0k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
84.0k
      p += htbl->bits[l];
217
84.0k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
140k
    } else {
219
140k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
140k
    }
221
224k
  }
222
14.0k
  dtbl->valoffset[17] = 0;
223
14.0k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
3.61M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
3.59M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
14.0k
  p = 0;
236
126k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
207k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
94.8k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
2.92M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
2.82M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
2.82M
        lookbits++;
244
2.82M
      }
245
94.8k
    }
246
112k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
14.0k
  if (isDC) {
255
96.6k
    for (i = 0; i < numsymbols; i++) {
256
85.0k
      int sym = htbl->huffval[i];
257
85.0k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
36
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
85.0k
    }
260
11.5k
  }
261
14.0k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
3.11M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
407k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
407k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
407k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
407k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
407k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
3.10M
    while (bits_left < MIN_GET_BITS) {
303
2.73M
      register int c;
304
305
      /* Attempt to read a byte */
306
2.73M
      if (bytes_in_buffer == 0) {
307
1.06k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.06k
        next_input_byte = cinfo->src->next_input_byte;
310
1.06k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.06k
      }
312
2.73M
      bytes_in_buffer--;
313
2.73M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
2.73M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
35.3k
        do {
323
35.3k
          if (bytes_in_buffer == 0) {
324
63
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
63
            next_input_byte = cinfo->src->next_input_byte;
327
63
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
63
          }
329
35.3k
          bytes_in_buffer--;
330
35.3k
          c = *next_input_byte++;
331
35.3k
        } while (c == 0xFF);
332
333
18.9k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
11.7k
          c = 0xFF;
336
11.7k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
7.12k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
7.12k
          goto no_more_bytes;
348
7.12k
        }
349
18.9k
      }
350
351
      /* OK, load c into get_buffer */
352
2.72M
      get_buffer = (get_buffer << 8) | c;
353
2.72M
      bits_left += 8;
354
2.72M
    } /* end while */
355
384k
  } else {
356
30.4k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
30.4k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.88k
      if (!cinfo->entropy->insufficient_data) {
368
1.88k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
1.88k
        cinfo->entropy->insufficient_data = TRUE;
370
1.88k
      }
371
      /* Fill the buffer with zero bits */
372
1.88k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.88k
      bits_left = MIN_GET_BITS;
374
1.88k
    }
375
30.4k
  }
376
377
  /* Unload the local registers */
378
407k
  state->next_input_byte = next_input_byte;
379
407k
  state->bytes_in_buffer = bytes_in_buffer;
380
407k
  state->get_buffer = get_buffer;
381
407k
  state->bits_left = bits_left;
382
383
407k
  return TRUE;
384
407k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
383k
#define GET_BYTE { \
392
383k
  register int c0, c1; \
393
383k
  c0 = *buffer++; \
394
383k
  c1 = *buffer; \
395
383k
  /* Pre-execute most common case */ \
396
383k
  get_buffer = (get_buffer << 8) | c0; \
397
383k
  bits_left += 8; \
398
383k
  if (c0 == 0xFF) { \
399
61.0k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
61.0k
    buffer++; \
401
61.0k
    if (c1 != 0) { \
402
43.9k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
43.9k
      cinfo->unread_marker = c1; \
404
43.9k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
43.9k
      buffer -= 2; \
406
43.9k
      get_buffer &= ~0xFF; \
407
43.9k
    } \
408
61.0k
  } \
409
383k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.19M
  if (bits_left <= 16) { \
416
63.9k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
63.9k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
37.8k
{
440
37.8k
  register int l = min_bits;
441
37.8k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
37.8k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
37.8k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
76.2k
  while (code > htbl->maxcode[l]) {
453
38.3k
    code <<= 1;
454
38.3k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
38.3k
    code |= GET_BITS(1);
456
38.3k
    l++;
457
38.3k
  }
458
459
  /* Unload the local registers */
460
37.8k
  state->get_buffer = get_buffer;
461
37.8k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
37.8k
  if (l > 16) {
466
350
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
350
    return 0;                   /* fake a zero as the safest result */
468
350
  }
469
470
37.5k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
37.8k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
565k
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
565k
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
44
{
514
44
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
44
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
44
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
44
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
44
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
174
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
130
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
44
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
44
  if (cinfo->unread_marker == 0)
539
44
    entropy->pub.insufficient_data = FALSE;
540
541
44
  return TRUE;
542
44
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
106k
{
554
106k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
106k
  BITREAD_STATE_VARS;
556
106k
  int blkn;
557
106k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
106k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
106k
  state = entropy->saved;
563
564
217k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
111k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
111k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
111k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
111k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
111k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
111k
    if (s) {
575
12.7k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
12.7k
      r = GET_BITS(s);
577
12.7k
      s = HUFF_EXTEND(r, s);
578
12.7k
    }
579
580
111k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
111k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
111k
      s += state.last_dc_val[ci];
592
111k
      state.last_dc_val[ci] = s;
593
111k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
111k
        (*block)[0] = (JCOEF)s;
596
111k
      }
597
111k
    }
598
599
111k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
181k
      for (k = 1; k < DCTSIZE2; k++) {
604
179k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
179k
        r = s >> 4;
607
179k
        s &= 15;
608
609
179k
        if (s) {
610
68.2k
          k += r;
611
68.2k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
68.2k
          r = GET_BITS(s);
613
68.2k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
68.2k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
111k
        } else {
620
111k
          if (r != 15)
621
109k
            break;
622
1.80k
          k += 15;
623
1.80k
        }
624
179k
      }
625
626
111k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
263
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
263
    }
647
111k
  }
648
649
  /* Completed MCU, so update state */
650
106k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
106k
  entropy->saved = state;
652
106k
  return TRUE;
653
106k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
131k
{
665
131k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
131k
  BITREAD_STATE_VARS;
667
131k
  JOCTET *buffer;
668
131k
  int blkn;
669
131k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
131k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
131k
  buffer = (JOCTET *)br_state.next_input_byte;
675
131k
  state = entropy->saved;
676
677
263k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
131k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
131k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
131k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
131k
    register int s, k, r, l;
682
683
131k
    HUFF_DECODE_FAST(s, l, dctbl);
684
131k
    if (s) {
685
35.9k
      FILL_BIT_BUFFER_FAST
686
35.9k
      r = GET_BITS(s);
687
35.9k
      s = HUFF_EXTEND(r, s);
688
35.9k
    }
689
690
131k
    if (entropy->dc_needed[blkn]) {
691
131k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
131k
      s += state.last_dc_val[ci];
696
131k
      state.last_dc_val[ci] = s;
697
131k
      if (block)
698
131k
        (*block)[0] = (JCOEF)s;
699
131k
    }
700
701
131k
    if (entropy->ac_needed[blkn] && block) {
702
703
590k
      for (k = 1; k < DCTSIZE2; k++) {
704
582k
        HUFF_DECODE_FAST(s, l, actbl);
705
582k
        r = s >> 4;
706
582k
        s &= 15;
707
708
582k
        if (s) {
709
449k
          k += r;
710
449k
          FILL_BIT_BUFFER_FAST
711
449k
          r = GET_BITS(s);
712
449k
          s = HUFF_EXTEND(r, s);
713
449k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
449k
        } else {
715
133k
          if (r != 15) break;
716
9.67k
          k += 15;
717
9.67k
        }
718
582k
      }
719
720
131k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
131k
  }
738
739
131k
  if (cinfo->unread_marker != 0) {
740
8.55k
    cinfo->unread_marker = 0;
741
8.55k
    return FALSE;
742
8.55k
  }
743
744
123k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
123k
  br_state.next_input_byte = buffer;
746
123k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
123k
  entropy->saved = state;
748
123k
  return TRUE;
749
131k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
229k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
229k
{
772
229k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
229k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
229k
  if (cinfo->restart_interval) {
777
72.3k
    if (entropy->restarts_to_go == 0)
778
44
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
72.3k
    usefast = 0;
781
72.3k
  }
782
783
229k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
229k
      cinfo->unread_marker != 0)
785
30.2k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
229k
  if (!entropy->pub.insufficient_data) {
791
792
229k
    if (usefast) {
793
131k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
131k
    } else {
795
106k
use_slow:
796
106k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
106k
    }
798
799
229k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
229k
  if (cinfo->restart_interval)
803
72.3k
    entropy->restarts_to_go--;
804
805
229k
  return TRUE;
806
229k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
936
{
816
936
  huff_entropy_ptr entropy;
817
936
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
936
  std_huff_tables((j_common_ptr)cinfo);
824
825
936
  entropy = (huff_entropy_ptr)
826
936
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
936
                                sizeof(huff_entropy_decoder));
828
936
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
936
  entropy->pub.start_pass = start_pass_huff_decoder;
830
936
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
4.68k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
3.74k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
3.74k
  }
836
936
}