/src/qpdf/libqpdf/QPDF_encryption.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // This file implements methods from the QPDF class that involve |
2 | | // encryption. |
3 | | |
4 | | #include <qpdf/assert_debug.h> |
5 | | |
6 | | #include <qpdf/QPDF_private.hh> |
7 | | |
8 | | #include <qpdf/QPDFExc.hh> |
9 | | |
10 | | #include <qpdf/MD5.hh> |
11 | | #include <qpdf/Pl_AES_PDF.hh> |
12 | | #include <qpdf/Pl_Buffer.hh> |
13 | | #include <qpdf/Pl_RC4.hh> |
14 | | #include <qpdf/Pl_SHA2.hh> |
15 | | #include <qpdf/QPDFObjectHandle_private.hh> |
16 | | #include <qpdf/QTC.hh> |
17 | | #include <qpdf/QUtil.hh> |
18 | | #include <qpdf/RC4.hh> |
19 | | #include <qpdf/Util.hh> |
20 | | |
21 | | #include <algorithm> |
22 | | #include <cstring> |
23 | | |
24 | | using namespace qpdf; |
25 | | using namespace std::literals; |
26 | | |
27 | | static std::string padding_string = |
28 | | "\x28\xbf\x4e\x5e\x4e\x75\x8a\x41\x64\x00\x4e\x56\xff\xfa\x01\x08" |
29 | | "\x2e\x2e\x00\xb6\xd0\x68\x3e\x80\x2f\x0c\xa9\xfe\x64\x53\x69\x7a"s; |
30 | | |
31 | | static unsigned int const key_bytes = 32; |
32 | | |
33 | | static unsigned int const OU_key_bytes_V5 = 48; |
34 | | static unsigned int const OUE_key_bytes_V5 = 32; |
35 | | static unsigned int const Perms_key_bytes_V5 = 16; |
36 | | |
37 | | int |
38 | | QPDF::EncryptionData::getV() const |
39 | 0 | { |
40 | 0 | return this->V; |
41 | 0 | } |
42 | | |
43 | | int |
44 | | QPDF::EncryptionData::getR() const |
45 | 0 | { |
46 | 0 | return this->R; |
47 | 0 | } |
48 | | |
49 | | int |
50 | | QPDF::EncryptionData::getLengthBytes() const |
51 | 0 | { |
52 | 0 | return this->Length_bytes; |
53 | 0 | } |
54 | | |
55 | | int |
56 | | QPDF::EncryptionData::getP() const |
57 | 0 | { |
58 | 0 | return static_cast<int>(P.to_ulong()); |
59 | 0 | } |
60 | | |
61 | | bool |
62 | | QPDF::EncryptionData::getP(size_t bit) const |
63 | 0 | { |
64 | 0 | qpdf_assert_debug(bit); |
65 | 0 | return P.test(bit - 1); |
66 | 0 | } |
67 | | |
68 | | bool |
69 | | QPDF::EncryptionParameters::P(size_t bit) const |
70 | 0 | { |
71 | 0 | qpdf_assert_debug(bit); |
72 | 0 | return P_.test(bit - 1); |
73 | 0 | } |
74 | | |
75 | | std::string const& |
76 | | QPDF::EncryptionData::getO() const |
77 | 0 | { |
78 | 0 | return this->O; |
79 | 0 | } |
80 | | |
81 | | std::string const& |
82 | | QPDF::EncryptionData::getU() const |
83 | 0 | { |
84 | 0 | return this->U; |
85 | 0 | } |
86 | | |
87 | | std::string const& |
88 | | QPDF::EncryptionData::getOE() const |
89 | 0 | { |
90 | 0 | return this->OE; |
91 | 0 | } |
92 | | |
93 | | std::string const& |
94 | | QPDF::EncryptionData::getUE() const |
95 | 0 | { |
96 | 0 | return this->UE; |
97 | 0 | } |
98 | | |
99 | | std::string const& |
100 | | QPDF::EncryptionData::getPerms() const |
101 | 0 | { |
102 | 0 | return this->Perms; |
103 | 0 | } |
104 | | |
105 | | std::string const& |
106 | | QPDF::EncryptionData::getId1() const |
107 | 0 | { |
108 | 0 | return this->id1; |
109 | 0 | } |
110 | | |
111 | | bool |
112 | | QPDF::EncryptionData::getEncryptMetadata() const |
113 | 0 | { |
114 | 0 | return this->encrypt_metadata; |
115 | 0 | } |
116 | | |
117 | | void |
118 | | QPDF::EncryptionData::setO(std::string const& O) |
119 | 0 | { |
120 | 0 | this->O = O; |
121 | 0 | } |
122 | | |
123 | | void |
124 | | QPDF::EncryptionData::setU(std::string const& U) |
125 | 0 | { |
126 | 0 | this->U = U; |
127 | 0 | } |
128 | | |
129 | | void |
130 | | QPDF::EncryptionData::setP(size_t bit, bool val) |
131 | 0 | { |
132 | 0 | qpdf_assert_debug(bit); |
133 | 0 | P.set(bit - 1, val); |
134 | 0 | } |
135 | | |
136 | | void |
137 | | QPDF::EncryptionData::setP(unsigned long val) |
138 | 0 | { |
139 | 0 | P = std::bitset<32>(val); |
140 | 0 | } |
141 | | |
142 | | void |
143 | | QPDF::EncryptionData::setId1(std::string const& val) |
144 | 0 | { |
145 | 0 | id1 = val; |
146 | 0 | } |
147 | | |
148 | | void |
149 | | QPDF::EncryptionData::setV5EncryptionParameters( |
150 | | std::string const& O, |
151 | | std::string const& OE, |
152 | | std::string const& U, |
153 | | std::string const& UE, |
154 | | std::string const& Perms) |
155 | 0 | { |
156 | 0 | this->O = O; |
157 | 0 | this->OE = OE; |
158 | 0 | this->U = U; |
159 | 0 | this->UE = UE; |
160 | 0 | this->Perms = Perms; |
161 | 0 | } |
162 | | |
163 | | void |
164 | | QPDF::trim_user_password(std::string& user_password) |
165 | 0 | { |
166 | | // Although unnecessary, this routine trims the padding string from the end of a user password. |
167 | | // Its only purpose is for recovery of user passwords which is done in the test suite. |
168 | 0 | if (user_password.size() < key_bytes) { |
169 | 0 | return; |
170 | 0 | } |
171 | | |
172 | 0 | auto idx = user_password.find('\x28'); |
173 | |
|
174 | 0 | while (idx != user_password.npos) { |
175 | 0 | if (padding_string.starts_with(user_password.substr(idx))) { |
176 | 0 | user_password.resize(idx); |
177 | 0 | return; |
178 | 0 | } |
179 | 0 | QTC::TC("qpdf", "QPDF_encryption skip 0x28"); |
180 | 0 | idx = user_password.find('\x28', ++idx); |
181 | 0 | } |
182 | 0 | } |
183 | | |
184 | | static std::string |
185 | | pad_or_truncate_password_V4(std::string password) |
186 | 0 | { |
187 | 0 | if (password.size() < key_bytes) { |
188 | 0 | password.append(padding_string); |
189 | 0 | } |
190 | 0 | password.resize(key_bytes); |
191 | 0 | return password; |
192 | 0 | } |
193 | | |
194 | | static std::string |
195 | | iterate_md5_digest(MD5& md5, int iterations, int key_len) |
196 | 0 | { |
197 | 0 | MD5::Digest digest; |
198 | 0 | md5.digest(digest); |
199 | 0 | auto len = std::min(QIntC::to_size(key_len), sizeof(digest)); |
200 | 0 | for (int i = 0; i < iterations; ++i) { |
201 | 0 | MD5 m; |
202 | 0 | m.encodeDataIncrementally(reinterpret_cast<char*>(digest), len); |
203 | 0 | m.digest(digest); |
204 | 0 | } |
205 | 0 | return {reinterpret_cast<char*>(digest), len}; |
206 | 0 | } |
207 | | |
208 | | static void |
209 | | iterate_rc4(std::string& data, std::string_view okey, int iterations, bool reverse) |
210 | 0 | { |
211 | 0 | auto len = okey.size(); |
212 | 0 | std::string key(len, '\0'); |
213 | 0 | for (int i = 0; i < iterations; ++i) { |
214 | 0 | int const xor_value = (reverse ? iterations - 1 - i : i); |
215 | 0 | for (size_t j = 0; j < len; ++j) { |
216 | 0 | key[j] = static_cast<char>(okey[j] ^ xor_value); |
217 | 0 | } |
218 | 0 | RC4::process(key, data); |
219 | 0 | } |
220 | 0 | } |
221 | | |
222 | | static std::string |
223 | | process_with_aes( |
224 | | std::string const& key, |
225 | | bool encrypt, |
226 | | std::string const& data, |
227 | | size_t outlength = 0, |
228 | | unsigned int repetitions = 1, |
229 | | unsigned char const* iv = nullptr, |
230 | | size_t iv_length = 0) |
231 | 0 | { |
232 | 0 | Pl_Buffer buffer("buffer"); |
233 | 0 | Pl_AES_PDF aes("aes", &buffer, encrypt, key); |
234 | 0 | if (iv) { |
235 | 0 | aes.setIV(iv, iv_length); |
236 | 0 | } else { |
237 | 0 | aes.useZeroIV(); |
238 | 0 | } |
239 | 0 | aes.disablePadding(); |
240 | 0 | for (unsigned int i = 0; i < repetitions; ++i) { |
241 | 0 | aes.writeString(data); |
242 | 0 | } |
243 | 0 | aes.finish(); |
244 | 0 | if (outlength == 0) { |
245 | 0 | return buffer.getString(); |
246 | 0 | } else { |
247 | 0 | return buffer.getString().substr(0, outlength); |
248 | 0 | } |
249 | 0 | } |
250 | | |
251 | | std::string |
252 | | QPDF::EncryptionData::hash_V5( |
253 | | std::string const& password, std::string const& salt, std::string const& udata) const |
254 | 0 | { |
255 | 0 | Pl_SHA2 hash(256); |
256 | 0 | hash.writeString(password); |
257 | 0 | hash.writeString(salt); |
258 | 0 | hash.writeString(udata); |
259 | 0 | hash.finish(); |
260 | 0 | std::string K = hash.getRawDigest(); |
261 | |
|
262 | 0 | std::string result; |
263 | 0 | if (getR() < 6) { |
264 | 0 | result = K; |
265 | 0 | } else { |
266 | | // Algorithm 2.B from ISO 32000-1 chapter 7: Computing a hash |
267 | |
|
268 | 0 | int round_number = 0; |
269 | 0 | bool done = false; |
270 | 0 | while (!done) { |
271 | | // The hash algorithm has us setting K initially to the R5 value and then repeating a |
272 | | // series of steps 64 times before starting with the termination case testing. The |
273 | | // wording of the specification is very unclear as to the exact number of times it |
274 | | // should be run since the wording about whether the initial setup counts as round 0 or |
275 | | // not is ambiguous. This code counts the initial setup (R5) value as round 0, which |
276 | | // appears to be correct. This was determined to be correct by increasing or decreasing |
277 | | // the number of rounds by 1 or 2 from this value and generating 20 test files. In this |
278 | | // interpretation, all the test files worked with Adobe Reader X. In the other |
279 | | // configurations, many of the files did not work, and we were accurately able to |
280 | | // predict which files didn't work by looking at the conditions under which we |
281 | | // terminated repetition. |
282 | |
|
283 | 0 | ++round_number; |
284 | 0 | std::string K1 = password + K + udata; |
285 | 0 | qpdf_assert_debug(K.length() >= 32); |
286 | 0 | std::string E = process_with_aes( |
287 | 0 | K.substr(0, 16), |
288 | 0 | true, |
289 | 0 | K1, |
290 | 0 | 0, |
291 | 0 | 64, |
292 | 0 | QUtil::unsigned_char_pointer(K.substr(16, 16)), |
293 | 0 | 16); |
294 | | |
295 | | // E_mod_3 is supposed to be mod 3 of the first 16 bytes of E taken as as a (128-bit) |
296 | | // big-endian number. Since (xy mod n) is equal to ((x mod n) + (y mod n)) mod n and |
297 | | // since 256 mod n is 1, we can just take the sums of the the mod 3s of each byte to get |
298 | | // the same result. |
299 | 0 | int E_mod_3 = 0; |
300 | 0 | for (unsigned int i = 0; i < 16; ++i) { |
301 | 0 | E_mod_3 += static_cast<unsigned char>(E.at(i)); |
302 | 0 | } |
303 | 0 | E_mod_3 %= 3; |
304 | 0 | int next_hash = ((E_mod_3 == 0) ? 256 : (E_mod_3 == 1) ? 384 : 512); |
305 | 0 | Pl_SHA2 sha2(next_hash); |
306 | 0 | sha2.writeString(E); |
307 | 0 | sha2.finish(); |
308 | 0 | K = sha2.getRawDigest(); |
309 | |
|
310 | 0 | if (round_number >= 64) { |
311 | 0 | unsigned int ch = static_cast<unsigned char>(*(E.rbegin())); |
312 | |
|
313 | 0 | if (ch <= QIntC::to_uint(round_number - 32)) { |
314 | 0 | done = true; |
315 | 0 | } |
316 | 0 | } |
317 | 0 | } |
318 | 0 | result = K.substr(0, 32); |
319 | 0 | } |
320 | | |
321 | 0 | return result; |
322 | 0 | } |
323 | | |
324 | | static void |
325 | | pad_short_parameter(std::string& param, size_t max_len) |
326 | 0 | { |
327 | 0 | if (param.length() < max_len) { |
328 | 0 | QTC::TC("qpdf", "QPDF_encryption pad short parameter"); |
329 | 0 | param.append(max_len - param.length(), '\0'); |
330 | 0 | } |
331 | 0 | } |
332 | | |
333 | | std::string |
334 | | QPDF::compute_data_key( |
335 | | std::string const& encryption_key, |
336 | | int objid, |
337 | | int generation, |
338 | | bool use_aes, |
339 | | int encryption_V, |
340 | | int encryption_R) |
341 | 0 | { |
342 | | // Algorithm 3.1 from the PDF 1.7 Reference Manual |
343 | |
|
344 | 0 | std::string result = encryption_key; |
345 | |
|
346 | 0 | if (encryption_V >= 5) { |
347 | | // Algorithm 3.1a (PDF 1.7 extension level 3): just use encryption key straight. |
348 | 0 | return result; |
349 | 0 | } |
350 | | |
351 | | // Append low three bytes of object ID and low two bytes of generation |
352 | 0 | result.append(1, static_cast<char>(objid & 0xff)); |
353 | 0 | result.append(1, static_cast<char>((objid >> 8) & 0xff)); |
354 | 0 | result.append(1, static_cast<char>((objid >> 16) & 0xff)); |
355 | 0 | result.append(1, static_cast<char>(generation & 0xff)); |
356 | 0 | result.append(1, static_cast<char>((generation >> 8) & 0xff)); |
357 | 0 | if (use_aes) { |
358 | 0 | result += "sAlT"; |
359 | 0 | } |
360 | 0 | return MD5::digest(result).substr(0, result.size()); |
361 | 0 | } |
362 | | |
363 | | std::string |
364 | | QPDF::compute_encryption_key(std::string const& password, EncryptionData const& data) |
365 | 0 | { |
366 | 0 | return data.compute_encryption_key(password); |
367 | 0 | } |
368 | | |
369 | | std::string |
370 | | QPDF::EncryptionData::compute_encryption_key(std::string const& password) const |
371 | 0 | { |
372 | 0 | if (getV() >= 5) { |
373 | | // For V >= 5, the encryption key is generated and stored in the file, encrypted separately |
374 | | // with both user and owner passwords. |
375 | 0 | return recover_encryption_key_with_password(password); |
376 | 0 | } else { |
377 | | // For V < 5, the encryption key is derived from the user |
378 | | // password. |
379 | 0 | return compute_encryption_key_from_password(password); |
380 | 0 | } |
381 | 0 | } |
382 | | |
383 | | std::string |
384 | | QPDF::EncryptionData::compute_encryption_key_from_password(std::string const& password) const |
385 | 0 | { |
386 | | // Algorithm 3.2 from the PDF 1.7 Reference Manual |
387 | | |
388 | | // This code does not properly handle Unicode passwords. Passwords are supposed to be converted |
389 | | // from OS codepage characters to PDFDocEncoding. Unicode passwords are supposed to be |
390 | | // converted to OS codepage before converting to PDFDocEncoding. We instead require the |
391 | | // password to be presented in its final form. |
392 | |
|
393 | 0 | MD5 md5; |
394 | 0 | md5.encodeDataIncrementally(pad_or_truncate_password_V4(password)); |
395 | 0 | md5.encodeDataIncrementally(getO()); |
396 | 0 | char pbytes[4]; |
397 | 0 | int p = getP(); |
398 | 0 | pbytes[0] = static_cast<char>(p & 0xff); |
399 | 0 | pbytes[1] = static_cast<char>((p >> 8) & 0xff); |
400 | 0 | pbytes[2] = static_cast<char>((p >> 16) & 0xff); |
401 | 0 | pbytes[3] = static_cast<char>((p >> 24) & 0xff); |
402 | 0 | md5.encodeDataIncrementally(pbytes, 4); |
403 | 0 | md5.encodeDataIncrementally(getId1()); |
404 | 0 | if (getR() >= 4 && !getEncryptMetadata()) { |
405 | 0 | md5.encodeDataIncrementally("\xff\xff\xff\xff"); |
406 | 0 | } |
407 | 0 | return iterate_md5_digest(md5, (getR() >= 3 ? 50 : 0), getLengthBytes()); |
408 | 0 | } |
409 | | |
410 | | std::string |
411 | | QPDF::EncryptionData::compute_O_rc4_key( |
412 | | std::string const& user_password, std::string const& owner_password) const |
413 | 0 | { |
414 | 0 | if (getV() >= 5) { |
415 | 0 | throw std::logic_error("compute_O_rc4_key called for file with V >= 5"); |
416 | 0 | } |
417 | 0 | std::string password = owner_password.empty() ? user_password : owner_password; |
418 | 0 | MD5 md5; |
419 | 0 | md5.encodeDataIncrementally(pad_or_truncate_password_V4(password)); |
420 | 0 | return iterate_md5_digest(md5, (getR() >= 3 ? 50 : 0), getLengthBytes()); |
421 | 0 | } |
422 | | |
423 | | std::string |
424 | | QPDF::EncryptionData::compute_O_value( |
425 | | std::string const& user_password, std::string const& owner_password) const |
426 | 0 | { |
427 | | // Algorithm 3.3 from the PDF 1.7 Reference Manual |
428 | |
|
429 | 0 | auto upass = pad_or_truncate_password_V4(user_password); |
430 | 0 | std::string O_key = compute_O_rc4_key(user_password, owner_password); |
431 | 0 | pad_short_parameter(O_key, QIntC::to_size(getLengthBytes())); |
432 | 0 | iterate_rc4(upass, O_key, getR() >= 3 ? 20 : 1, false); |
433 | 0 | return upass; |
434 | 0 | } |
435 | | |
436 | | std::string |
437 | | QPDF::EncryptionData::compute_U_value_R2(std::string const& user_password) const |
438 | 0 | { |
439 | | // Algorithm 3.4 from the PDF 1.7 Reference Manual |
440 | |
|
441 | 0 | std::string k1 = compute_encryption_key(user_password); |
442 | 0 | auto udata = padding_string; |
443 | 0 | pad_short_parameter(k1, QIntC::to_size(getLengthBytes())); |
444 | 0 | iterate_rc4(udata, k1, 1, false); |
445 | 0 | return udata; |
446 | 0 | } |
447 | | |
448 | | std::string |
449 | | QPDF::EncryptionData::compute_U_value_R3(std::string const& user_password) const |
450 | 0 | { |
451 | | // Algorithm 3.5 from the PDF 1.7 Reference Manual |
452 | |
|
453 | 0 | std::string k1 = compute_encryption_key(user_password); |
454 | 0 | MD5 md5; |
455 | 0 | md5.encodeDataIncrementally(padding_string); |
456 | 0 | md5.encodeDataIncrementally(getId1()); |
457 | 0 | auto result = md5.digest(); |
458 | 0 | pad_short_parameter(k1, QIntC::to_size(getLengthBytes())); |
459 | 0 | iterate_rc4(result, k1, 20, false); |
460 | | // pad with arbitrary data -- make it consistent for the sake of testing |
461 | 0 | result += "\x0\x21\x44\x69\x90\xb9\xe4\x11\x40\x71\xa4\xd9\x10\x49\x84\xc1"s; |
462 | 0 | return result; |
463 | 0 | } |
464 | | |
465 | | std::string |
466 | | QPDF::EncryptionData::compute_U_value(std::string const& user_password) const |
467 | 0 | { |
468 | 0 | if (getR() >= 3) { |
469 | 0 | return compute_U_value_R3(user_password); |
470 | 0 | } |
471 | | |
472 | 0 | return compute_U_value_R2(user_password); |
473 | 0 | } |
474 | | |
475 | | bool |
476 | | QPDF::EncryptionData::check_user_password_V4(std::string const& user_password) const |
477 | 0 | { |
478 | | // Algorithm 3.6 from the PDF 1.7 Reference Manual |
479 | |
|
480 | 0 | std::string u_value = compute_U_value(user_password); |
481 | 0 | size_t to_compare = (getR() >= 3 ? sizeof(MD5::Digest) : key_bytes); |
482 | 0 | return memcmp(getU().c_str(), u_value.c_str(), to_compare) == 0; |
483 | 0 | } |
484 | | |
485 | | bool |
486 | | QPDF::EncryptionData::check_user_password_V5(std::string const& user_password) const |
487 | 0 | { |
488 | | // Algorithm 3.11 from the PDF 1.7 extension level 3 |
489 | |
|
490 | 0 | std::string user_data = getU().substr(0, 32); |
491 | 0 | std::string validation_salt = getU().substr(32, 8); |
492 | 0 | std::string password = user_password.substr(0, 127); |
493 | 0 | return hash_V5(user_password.substr(0, 127), validation_salt, "") == user_data; |
494 | 0 | } |
495 | | |
496 | | bool |
497 | | QPDF::EncryptionData::check_user_password(std::string const& user_password) const |
498 | 0 | { |
499 | 0 | if (getV() < 5) { |
500 | 0 | return check_user_password_V4(user_password); |
501 | 0 | } else { |
502 | 0 | return check_user_password_V5(user_password); |
503 | 0 | } |
504 | 0 | } |
505 | | |
506 | | bool |
507 | | QPDF::EncryptionData::check_owner_password_V4( |
508 | | std::string& user_password, std::string const& owner_password) const |
509 | 0 | { |
510 | | // Algorithm 3.7 from the PDF 1.7 Reference Manual |
511 | |
|
512 | 0 | auto key = compute_O_rc4_key(user_password, owner_password); |
513 | 0 | pad_short_parameter(key, QIntC::to_size(getLengthBytes())); |
514 | 0 | auto new_user_password = O.substr(0, key_bytes); |
515 | 0 | iterate_rc4(new_user_password, key, (getR() >= 3) ? 20 : 1, true); |
516 | 0 | if (check_user_password(new_user_password)) { |
517 | 0 | user_password = new_user_password; |
518 | 0 | return true; |
519 | 0 | } |
520 | 0 | return false; |
521 | 0 | } |
522 | | |
523 | | bool |
524 | | QPDF::EncryptionData::check_owner_password_V5(std::string const& owner_password) const |
525 | 0 | { |
526 | | // Algorithm 3.12 from the PDF 1.7 extension level 3 |
527 | |
|
528 | 0 | std::string user_data = getU().substr(0, 48); |
529 | 0 | std::string owner_data = getO().substr(0, 32); |
530 | 0 | std::string validation_salt = getO().substr(32, 8); |
531 | 0 | return hash_V5(owner_password.substr(0, 127), validation_salt, user_data) == owner_data; |
532 | 0 | } |
533 | | |
534 | | bool |
535 | | QPDF::EncryptionData::check_owner_password( |
536 | | std::string& user_password, std::string const& owner_password) const |
537 | 0 | { |
538 | 0 | if (getV() < 5) { |
539 | 0 | return check_owner_password_V4(user_password, owner_password); |
540 | 0 | } else { |
541 | 0 | return check_owner_password_V5(owner_password); |
542 | 0 | } |
543 | 0 | } |
544 | | |
545 | | std::string |
546 | | QPDF::EncryptionData::recover_encryption_key_with_password(std::string const& password) const |
547 | 0 | { |
548 | | // Disregard whether Perms is valid. |
549 | 0 | bool disregard; |
550 | 0 | return recover_encryption_key_with_password(password, disregard); |
551 | 0 | } |
552 | | |
553 | | std::string |
554 | | QPDF::EncryptionData::compute_Perms_value_V5_clear() const |
555 | 0 | { |
556 | | // From algorithm 3.10 from the PDF 1.7 extension level 3 |
557 | 0 | std::string k = " \xff\xff\xff\xffTadb "; |
558 | 0 | int perms = getP(); |
559 | 0 | for (size_t i = 0; i < 4; ++i) { |
560 | 0 | k[i] = static_cast<char>(perms & 0xff); |
561 | 0 | perms >>= 8; |
562 | 0 | } |
563 | 0 | if (!getEncryptMetadata()) { |
564 | 0 | k[8] = 'F'; |
565 | 0 | } |
566 | 0 | QUtil::initializeWithRandomBytes(reinterpret_cast<unsigned char*>(&k[12]), 4); |
567 | 0 | return k; |
568 | 0 | } |
569 | | |
570 | | std::string |
571 | | QPDF::EncryptionData::recover_encryption_key_with_password( |
572 | | std::string const& password, bool& perms_valid) const |
573 | 0 | { |
574 | | // Algorithm 3.2a from the PDF 1.7 extension level 3 |
575 | | |
576 | | // This code does not handle Unicode passwords correctly. Empirical evidence suggests that most |
577 | | // viewers don't. We are supposed to process the input string with the SASLprep (RFC 4013) |
578 | | // profile of stringprep (RFC 3454) and then convert the result to UTF-8. |
579 | |
|
580 | 0 | perms_valid = false; |
581 | 0 | std::string key_password = password.substr(0, 127); |
582 | 0 | std::string key_salt; |
583 | 0 | std::string user_data; |
584 | 0 | std::string encrypted_file_key; |
585 | 0 | if (check_owner_password_V5(key_password)) { |
586 | 0 | key_salt = getO().substr(40, 8); |
587 | 0 | user_data = getU().substr(0, 48); |
588 | 0 | encrypted_file_key = getOE().substr(0, 32); |
589 | 0 | } else if (check_user_password_V5(key_password)) { |
590 | 0 | key_salt = getU().substr(40, 8); |
591 | 0 | encrypted_file_key = getUE().substr(0, 32); |
592 | 0 | } |
593 | 0 | std::string intermediate_key = hash_V5(key_password, key_salt, user_data); |
594 | 0 | std::string file_key = process_with_aes(intermediate_key, false, encrypted_file_key); |
595 | | |
596 | | // Decrypt Perms and check against expected value |
597 | 0 | auto perms_check = process_with_aes(file_key, false, getPerms()).substr(0, 12); |
598 | 0 | perms_valid = compute_Perms_value_V5_clear().substr(0, 12) == perms_check; |
599 | 0 | return file_key; |
600 | 0 | } |
601 | | |
602 | | QPDF::encryption_method_e |
603 | | QPDF::EncryptionParameters::interpretCF(QPDFObjectHandle const& cf) const |
604 | 0 | { |
605 | 0 | if (!cf.isName()) { |
606 | | // Default: /Identity |
607 | 0 | return e_none; |
608 | 0 | } |
609 | 0 | std::string filter = cf.getName(); |
610 | 0 | auto it = crypt_filters.find(filter); |
611 | 0 | if (it != crypt_filters.end()) { |
612 | 0 | return it->second; |
613 | 0 | } |
614 | 0 | if (filter == "/Identity") { |
615 | 0 | return e_none; |
616 | 0 | } |
617 | 0 | return e_unknown; |
618 | 0 | } |
619 | | |
620 | | void |
621 | | QPDF::initializeEncryption() |
622 | 7.53k | { |
623 | 7.53k | m->encp->initialize(*this); |
624 | 7.53k | } |
625 | | |
626 | | void |
627 | | QPDF::EncryptionParameters::initialize(QPDF& qpdf) |
628 | 7.53k | { |
629 | 7.53k | if (encryption_initialized) { |
630 | 0 | return; |
631 | 0 | } |
632 | 7.53k | encryption_initialized = true; |
633 | | |
634 | 7.53k | auto& qm = *qpdf.m; |
635 | 7.53k | auto& trailer = qm.trailer; |
636 | 7.53k | auto& file = qm.file; |
637 | | |
638 | 7.53k | auto warn_damaged_pdf = [&qpdf](std::string const& msg) { |
639 | 0 | qpdf.warn(qpdf.damagedPDF("encryption dictionary", msg)); |
640 | 0 | }; |
641 | 7.53k | auto throw_damaged_pdf = [&qpdf](std::string const& msg) { |
642 | 0 | throw qpdf.damagedPDF("encryption dictionary", msg); |
643 | 0 | }; |
644 | 7.53k | auto unsupported = [&file](std::string const& msg) -> QPDFExc { |
645 | 0 | return { |
646 | 0 | qpdf_e_unsupported, |
647 | 0 | file->getName(), |
648 | 0 | "encryption dictionary", |
649 | 0 | file->getLastOffset(), |
650 | 0 | msg}; |
651 | 0 | }; |
652 | | |
653 | | // After we initialize encryption parameters, we must use stored key information and never look |
654 | | // at /Encrypt again. Otherwise, things could go wrong if someone mutates the encryption |
655 | | // dictionary. |
656 | | |
657 | 7.53k | if (!trailer.hasKey("/Encrypt")) { |
658 | 7.53k | return; |
659 | 7.53k | } |
660 | | |
661 | | // Go ahead and set m->encrypted here. That way, isEncrypted will return true even if there |
662 | | // were errors reading the encryption dictionary. |
663 | 0 | encrypted = true; |
664 | |
|
665 | 0 | std::string id1; |
666 | 0 | auto id_obj = trailer.getKey("/ID"); |
667 | 0 | if (id_obj.size() != 2 || !id_obj.getArrayItem(0).isString()) { |
668 | | // Treating a missing ID as the empty string enables qpdf to decrypt some invalid encrypted |
669 | | // files with no /ID that poppler can read but Adobe Reader can't. |
670 | 0 | qpdf.warn(qpdf.damagedPDF("trailer", "invalid /ID in trailer dictionary")); |
671 | 0 | } else { |
672 | 0 | id1 = id_obj.getArrayItem(0).getStringValue(); |
673 | 0 | } |
674 | |
|
675 | 0 | auto encryption_dict = trailer.getKey("/Encrypt"); |
676 | 0 | if (!encryption_dict.isDictionary()) { |
677 | 0 | throw qpdf.damagedPDF("/Encrypt in trailer dictionary is not a dictionary"); |
678 | 0 | } |
679 | | |
680 | 0 | if (!(encryption_dict.getKey("/Filter").isName() && |
681 | 0 | (encryption_dict.getKey("/Filter").getName() == "/Standard"))) { |
682 | 0 | throw unsupported("unsupported encryption filter"); |
683 | 0 | } |
684 | 0 | if (!encryption_dict.getKey("/SubFilter").isNull()) { |
685 | 0 | qpdf.warn(unsupported("file uses encryption SubFilters, which qpdf does not support")); |
686 | 0 | } |
687 | |
|
688 | 0 | if (!(encryption_dict.getKey("/V").isInteger() && encryption_dict.getKey("/R").isInteger() && |
689 | 0 | encryption_dict.getKey("/O").isString() && encryption_dict.getKey("/U").isString() && |
690 | 0 | encryption_dict.getKey("/P").isInteger())) { |
691 | 0 | throw_damaged_pdf("some encryption dictionary parameters are missing or the wrong type"); |
692 | 0 | } |
693 | |
|
694 | 0 | int V = encryption_dict.getKey("/V").getIntValueAsInt(); |
695 | 0 | int R = encryption_dict.getKey("/R").getIntValueAsInt(); |
696 | 0 | std::string O = encryption_dict.getKey("/O").getStringValue(); |
697 | 0 | std::string U = encryption_dict.getKey("/U").getStringValue(); |
698 | 0 | int p = static_cast<int>(encryption_dict.getKey("/P").getIntValue()); |
699 | | |
700 | | // If supporting new encryption R/V values, remember to update error message inside this if |
701 | | // statement. |
702 | 0 | if (!(2 <= R && R <= 6 && (V == 1 || V == 2 || V == 4 || V == 5))) { |
703 | 0 | throw unsupported( |
704 | 0 | "Unsupported /R or /V in encryption dictionary; R = " + std::to_string(R) + |
705 | 0 | " (max 6), V = " + std::to_string(V) + " (max 5)"); |
706 | 0 | } |
707 | | |
708 | 0 | P_ = std::bitset<32>(static_cast<unsigned long long>(p)); |
709 | 0 | encryption_V = V; |
710 | 0 | R_ = R; |
711 | | |
712 | | // OE, UE, and Perms are only present if V >= 5. |
713 | 0 | std::string OE; |
714 | 0 | std::string UE; |
715 | 0 | std::string Perms; |
716 | |
|
717 | 0 | if (V < 5) { |
718 | | // These must be exactly the right number of bytes. |
719 | 0 | pad_short_parameter(O, key_bytes); |
720 | 0 | pad_short_parameter(U, key_bytes); |
721 | 0 | if (!(O.length() == key_bytes && U.length() == key_bytes)) { |
722 | 0 | throw_damaged_pdf("incorrect length for /O and/or /U in encryption dictionary"); |
723 | 0 | } |
724 | 0 | } else { |
725 | 0 | if (!(encryption_dict.getKey("/OE").isString() && |
726 | 0 | encryption_dict.getKey("/UE").isString() && |
727 | 0 | encryption_dict.getKey("/Perms").isString())) { |
728 | 0 | throw_damaged_pdf( |
729 | 0 | "some V=5 encryption dictionary parameters are missing or the wrong type"); |
730 | 0 | } |
731 | 0 | OE = encryption_dict.getKey("/OE").getStringValue(); |
732 | 0 | UE = encryption_dict.getKey("/UE").getStringValue(); |
733 | 0 | Perms = encryption_dict.getKey("/Perms").getStringValue(); |
734 | | |
735 | | // These may be longer than the minimum number of bytes. |
736 | 0 | pad_short_parameter(O, OU_key_bytes_V5); |
737 | 0 | pad_short_parameter(U, OU_key_bytes_V5); |
738 | 0 | pad_short_parameter(OE, OUE_key_bytes_V5); |
739 | 0 | pad_short_parameter(UE, OUE_key_bytes_V5); |
740 | 0 | pad_short_parameter(Perms, Perms_key_bytes_V5); |
741 | 0 | } |
742 | |
|
743 | 0 | int Length = 128; // Just take a guess. |
744 | 0 | if (V <= 1) { |
745 | 0 | Length = 40; |
746 | 0 | } else if (V == 4) { |
747 | 0 | Length = 128; |
748 | 0 | } else if (V == 5) { |
749 | 0 | Length = 256; |
750 | 0 | } else { |
751 | 0 | if (encryption_dict.getKey("/Length").isInteger()) { |
752 | 0 | Length = encryption_dict.getKey("/Length").getIntValueAsInt(); |
753 | 0 | if (Length % 8 || Length < 40 || Length > 128) { |
754 | 0 | Length = 128; // Just take a guess. |
755 | 0 | } |
756 | 0 | } |
757 | 0 | } |
758 | |
|
759 | 0 | encrypt_metadata = true; |
760 | 0 | if (V >= 4 && encryption_dict.getKey("/EncryptMetadata").isBool()) { |
761 | 0 | encrypt_metadata = encryption_dict.getKey("/EncryptMetadata").getBoolValue(); |
762 | 0 | } |
763 | |
|
764 | 0 | if (V == 4 || V == 5) { |
765 | 0 | auto CF = encryption_dict.getKey("/CF"); |
766 | 0 | for (auto const& [filter, cdict]: CF.as_dictionary()) { |
767 | 0 | if (cdict.isDictionary()) { |
768 | 0 | encryption_method_e method = e_none; |
769 | 0 | if (cdict.getKey("/CFM").isName()) { |
770 | 0 | std::string method_name = cdict.getKey("/CFM").getName(); |
771 | 0 | if (method_name == "/V2") { |
772 | 0 | QTC::TC("qpdf", "QPDF_encryption CFM V2"); |
773 | 0 | method = e_rc4; |
774 | 0 | } else if (method_name == "/AESV2") { |
775 | 0 | QTC::TC("qpdf", "QPDF_encryption CFM AESV2"); |
776 | 0 | method = e_aes; |
777 | 0 | } else if (method_name == "/AESV3") { |
778 | 0 | QTC::TC("qpdf", "QPDF_encryption CFM AESV3"); |
779 | 0 | method = e_aesv3; |
780 | 0 | } else { |
781 | | // Don't complain now -- maybe we won't need to reference this type. |
782 | 0 | method = e_unknown; |
783 | 0 | } |
784 | 0 | } |
785 | 0 | crypt_filters[filter] = method; |
786 | 0 | } |
787 | 0 | } |
788 | |
|
789 | 0 | cf_stream = interpretCF(encryption_dict.getKey("/StmF")); |
790 | 0 | cf_string = interpretCF(encryption_dict.getKey("/StrF")); |
791 | 0 | if (auto EFF = encryption_dict.getKey("/EFF"); EFF.isName()) { |
792 | | // qpdf does not use this for anything other than informational purposes. This is |
793 | | // intended to instruct conforming writers on which crypt filter should be used when new |
794 | | // file attachments are added to a PDF file, but qpdf never generates encrypted files |
795 | | // with non-default crypt filters. Prior to 10.2, I was under the mistaken impression |
796 | | // that this was supposed to be used for decrypting attachments, but the code was wrong |
797 | | // in a way that turns out not to have mattered because no writers were generating files |
798 | | // the way I was imagining. Still, providing this information could be useful when |
799 | | // looking at a file generated by something else, such as Acrobat when specifying that |
800 | | // only attachments should be encrypted. |
801 | 0 | cf_file = interpretCF(EFF); |
802 | 0 | } else { |
803 | 0 | cf_file = cf_stream; |
804 | 0 | } |
805 | 0 | } |
806 | |
|
807 | 0 | EncryptionData data(V, R, Length / 8, p, O, U, OE, UE, Perms, id1, encrypt_metadata); |
808 | 0 | if (qm.provided_password_is_hex_key) { |
809 | | // ignore passwords in file |
810 | 0 | encryption_key = QUtil::hex_decode(provided_password); |
811 | 0 | return; |
812 | 0 | } |
813 | | |
814 | 0 | owner_password_matched = data.check_owner_password(user_password, provided_password); |
815 | 0 | if (owner_password_matched && V < 5) { |
816 | | // password supplied was owner password; user_password has been initialized for V < 5 |
817 | 0 | if (qpdf.getTrimmedUserPassword() == provided_password) { |
818 | 0 | user_password_matched = true; |
819 | 0 | QTC::TC("qpdf", "QPDF_encryption user matches owner V < 5"); |
820 | 0 | } |
821 | 0 | } else { |
822 | 0 | user_password_matched = data.check_user_password(provided_password); |
823 | 0 | if (user_password_matched) { |
824 | 0 | user_password = provided_password; |
825 | 0 | } |
826 | 0 | } |
827 | 0 | if (user_password_matched && owner_password_matched) { |
828 | 0 | QTC::TC("qpdf", "QPDF_encryption same password", (V < 5) ? 0 : 1); |
829 | 0 | } |
830 | 0 | if (!(owner_password_matched || user_password_matched)) { |
831 | 0 | throw QPDFExc(qpdf_e_password, file->getName(), "", 0, "invalid password"); |
832 | 0 | } |
833 | | |
834 | 0 | if (V < 5) { |
835 | | // For V < 5, the user password is encrypted with the owner password, and the user password |
836 | | // is always used for computing the encryption key. |
837 | 0 | encryption_key = data.compute_encryption_key(user_password); |
838 | 0 | } else { |
839 | | // For V >= 5, either password can be used independently to compute the encryption key, and |
840 | | // neither password can be used to recover the other. |
841 | 0 | bool perms_valid; |
842 | 0 | encryption_key = data.recover_encryption_key_with_password(provided_password, perms_valid); |
843 | 0 | if (!perms_valid) { |
844 | 0 | warn_damaged_pdf("/Perms field in encryption dictionary doesn't match expected value"); |
845 | 0 | } |
846 | 0 | } |
847 | 0 | } |
848 | | |
849 | | std::string |
850 | | QPDF::getKeyForObject(std::shared_ptr<EncryptionParameters> encp, QPDFObjGen og, bool use_aes) |
851 | 0 | { |
852 | 0 | if (!encp->encrypted) { |
853 | 0 | throw std::logic_error("request for encryption key in non-encrypted PDF"); |
854 | 0 | } |
855 | | |
856 | 0 | if (og != encp->cached_key_og) { |
857 | 0 | encp->cached_object_encryption_key = compute_data_key( |
858 | 0 | encp->encryption_key, og.getObj(), og.getGen(), use_aes, encp->encryption_V, encp->R()); |
859 | 0 | encp->cached_key_og = og; |
860 | 0 | } |
861 | |
|
862 | 0 | return encp->cached_object_encryption_key; |
863 | 0 | } |
864 | | |
865 | | void |
866 | | QPDF::decryptString(std::string& str, QPDFObjGen og) |
867 | 0 | { |
868 | 0 | if (!og.isIndirect()) { |
869 | 0 | return; |
870 | 0 | } |
871 | 0 | bool use_aes = false; |
872 | 0 | if (m->encp->encryption_V >= 4) { |
873 | 0 | switch (m->encp->cf_string) { |
874 | 0 | case e_none: |
875 | 0 | return; |
876 | | |
877 | 0 | case e_aes: |
878 | 0 | use_aes = true; |
879 | 0 | break; |
880 | | |
881 | 0 | case e_aesv3: |
882 | 0 | use_aes = true; |
883 | 0 | break; |
884 | | |
885 | 0 | case e_rc4: |
886 | 0 | break; |
887 | | |
888 | 0 | default: |
889 | 0 | warn(damagedPDF( |
890 | 0 | "unknown encryption filter for strings (check /StrF in " |
891 | 0 | "/Encrypt dictionary); strings may be decrypted improperly")); |
892 | | // To avoid repeated warnings, reset cf_string. Assume we'd want to use AES if V == 4. |
893 | 0 | m->encp->cf_string = e_aes; |
894 | 0 | use_aes = true; |
895 | 0 | break; |
896 | 0 | } |
897 | 0 | } |
898 | | |
899 | 0 | std::string key = getKeyForObject(m->encp, og, use_aes); |
900 | 0 | try { |
901 | 0 | if (use_aes) { |
902 | 0 | QTC::TC("qpdf", "QPDF_encryption aes decode string"); |
903 | 0 | Pl_Buffer bufpl("decrypted string"); |
904 | 0 | Pl_AES_PDF pl("aes decrypt string", &bufpl, false, key); |
905 | 0 | pl.writeString(str); |
906 | 0 | pl.finish(); |
907 | 0 | str = bufpl.getString(); |
908 | 0 | } else { |
909 | 0 | QTC::TC("qpdf", "QPDF_encryption rc4 decode string"); |
910 | 0 | size_t vlen = str.length(); |
911 | | // Using std::shared_ptr guarantees that tmp will be freed even if rc4.process throws an |
912 | | // exception. |
913 | 0 | auto tmp = QUtil::make_unique_cstr(str); |
914 | 0 | RC4 rc4(QUtil::unsigned_char_pointer(key), toI(key.length())); |
915 | 0 | auto data = QUtil::unsigned_char_pointer(tmp.get()); |
916 | 0 | rc4.process(data, vlen, data); |
917 | 0 | str = std::string(tmp.get(), vlen); |
918 | 0 | } |
919 | 0 | } catch (QPDFExc&) { |
920 | 0 | throw; |
921 | 0 | } catch (std::runtime_error& e) { |
922 | 0 | throw damagedPDF("error decrypting string for object " + og.unparse() + ": " + e.what()); |
923 | 0 | } |
924 | 0 | } |
925 | | |
926 | | // Prepend a decryption pipeline to 'pipeline'. The decryption pipeline (returned as |
927 | | // 'decrypt_pipeline' must be owned by the caller to ensure that it stays alive while the pipeline |
928 | | // is in use. |
929 | | void |
930 | | QPDF::decryptStream( |
931 | | std::shared_ptr<EncryptionParameters> encp, |
932 | | std::shared_ptr<InputSource> file, |
933 | | QPDF& qpdf_for_warning, |
934 | | Pipeline*& pipeline, |
935 | | QPDFObjGen og, |
936 | | QPDFObjectHandle& stream_dict, |
937 | | bool is_root_metadata, |
938 | | std::unique_ptr<Pipeline>& decrypt_pipeline) |
939 | 0 | { |
940 | 0 | std::string type; |
941 | 0 | if (stream_dict.getKey("/Type").isName()) { |
942 | 0 | type = stream_dict.getKey("/Type").getName(); |
943 | 0 | } |
944 | 0 | if (type == "/XRef") { |
945 | 0 | QTC::TC("qpdf", "QPDF_encryption xref stream from encrypted file"); |
946 | 0 | return; |
947 | 0 | } |
948 | 0 | bool use_aes = false; |
949 | 0 | if (encp->encryption_V >= 4) { |
950 | 0 | encryption_method_e method = e_unknown; |
951 | 0 | std::string method_source = "/StmF from /Encrypt dictionary"; |
952 | |
|
953 | 0 | if (stream_dict.getKey("/Filter").isOrHasName("/Crypt")) { |
954 | 0 | if (stream_dict.getKey("/DecodeParms").isDictionary()) { |
955 | 0 | QPDFObjectHandle decode_parms = stream_dict.getKey("/DecodeParms"); |
956 | 0 | if (decode_parms.isDictionaryOfType("/CryptFilterDecodeParms")) { |
957 | 0 | QTC::TC("qpdf", "QPDF_encryption stream crypt filter"); |
958 | 0 | method = encp->interpretCF(decode_parms.getKey("/Name")); |
959 | 0 | method_source = "stream's Crypt decode parameters"; |
960 | 0 | } |
961 | 0 | } else if ( |
962 | 0 | stream_dict.getKey("/DecodeParms").isArray() && |
963 | 0 | stream_dict.getKey("/Filter").isArray()) { |
964 | 0 | auto filter = stream_dict.getKey("/Filter"); |
965 | 0 | auto decode = stream_dict.getKey("/DecodeParms"); |
966 | 0 | if (filter.size() == decode.size()) { |
967 | 0 | int i = 0; |
968 | 0 | for (auto const& item: filter.as_array()) { |
969 | 0 | if (item.isNameAndEquals("/Crypt")) { |
970 | 0 | auto crypt_params = decode.getArrayItem(i); |
971 | 0 | if (crypt_params.isDictionary() && |
972 | 0 | crypt_params.getKey("/Name").isName()) { |
973 | 0 | method = encp->interpretCF(crypt_params.getKey("/Name")); |
974 | 0 | method_source = "stream's Crypt decode parameters (array)"; |
975 | 0 | } |
976 | 0 | break; |
977 | 0 | } |
978 | 0 | ++i; |
979 | 0 | } |
980 | 0 | } |
981 | 0 | } |
982 | 0 | } |
983 | |
|
984 | 0 | if (method == e_unknown) { |
985 | 0 | if ((!encp->encrypt_metadata) && is_root_metadata) { |
986 | 0 | QTC::TC("qpdf", "QPDF_encryption cleartext metadata"); |
987 | 0 | method = e_none; |
988 | 0 | } else { |
989 | 0 | method = encp->cf_stream; |
990 | 0 | } |
991 | 0 | } |
992 | 0 | use_aes = false; |
993 | 0 | switch (method) { |
994 | 0 | case e_none: |
995 | 0 | return; |
996 | 0 | break; |
997 | | |
998 | 0 | case e_aes: |
999 | 0 | use_aes = true; |
1000 | 0 | break; |
1001 | | |
1002 | 0 | case e_aesv3: |
1003 | 0 | use_aes = true; |
1004 | 0 | break; |
1005 | | |
1006 | 0 | case e_rc4: |
1007 | 0 | break; |
1008 | | |
1009 | 0 | default: |
1010 | | // filter local to this stream. |
1011 | 0 | qpdf_for_warning.warn(QPDFExc( |
1012 | 0 | qpdf_e_damaged_pdf, |
1013 | 0 | file->getName(), |
1014 | 0 | "", |
1015 | 0 | file->getLastOffset(), |
1016 | 0 | "unknown encryption filter for streams (check " + method_source + |
1017 | 0 | "); streams may be decrypted improperly")); |
1018 | | // To avoid repeated warnings, reset cf_stream. Assume we'd want to use AES if V == 4. |
1019 | 0 | encp->cf_stream = e_aes; |
1020 | 0 | use_aes = true; |
1021 | 0 | break; |
1022 | 0 | } |
1023 | 0 | } |
1024 | 0 | std::string key = getKeyForObject(encp, og, use_aes); |
1025 | 0 | if (use_aes) { |
1026 | 0 | QTC::TC("qpdf", "QPDF_encryption aes decode stream"); |
1027 | 0 | decrypt_pipeline = |
1028 | 0 | std::make_unique<Pl_AES_PDF>("AES stream decryption", pipeline, false, key); |
1029 | 0 | } else { |
1030 | 0 | QTC::TC("qpdf", "QPDF_encryption rc4 decode stream"); |
1031 | 0 | decrypt_pipeline = std::make_unique<Pl_RC4>("RC4 stream decryption", pipeline, key); |
1032 | 0 | } |
1033 | 0 | pipeline = decrypt_pipeline.get(); |
1034 | 0 | } |
1035 | | |
1036 | | void |
1037 | | QPDF::compute_encryption_O_U( |
1038 | | char const* user_password, |
1039 | | char const* owner_password, |
1040 | | int V, |
1041 | | int R, |
1042 | | int key_len, |
1043 | | int P, |
1044 | | bool encrypt_metadata, |
1045 | | std::string const& id1, |
1046 | | std::string& out_O, |
1047 | | std::string& out_U) |
1048 | 0 | { |
1049 | 0 | EncryptionData data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata); |
1050 | 0 | data.compute_encryption_O_U(user_password, owner_password); |
1051 | 0 | out_O = data.getO(); |
1052 | 0 | out_U = data.getU(); |
1053 | 0 | } |
1054 | | |
1055 | | void |
1056 | | QPDF::EncryptionData::compute_encryption_O_U(char const* user_password, char const* owner_password) |
1057 | 0 | { |
1058 | 0 | if (V >= 5) { |
1059 | 0 | throw std::logic_error("compute_encryption_O_U called for file with V >= 5"); |
1060 | 0 | } |
1061 | 0 | O = compute_O_value(user_password, owner_password); |
1062 | 0 | U = compute_U_value(user_password); |
1063 | 0 | } |
1064 | | |
1065 | | void |
1066 | | QPDF::compute_encryption_parameters_V5( |
1067 | | char const* user_password, |
1068 | | char const* owner_password, |
1069 | | int V, |
1070 | | int R, |
1071 | | int key_len, |
1072 | | int P, |
1073 | | bool encrypt_metadata, |
1074 | | std::string const& id1, |
1075 | | std::string& encryption_key, |
1076 | | std::string& out_O, |
1077 | | std::string& out_U, |
1078 | | std::string& out_OE, |
1079 | | std::string& out_UE, |
1080 | | std::string& out_Perms) |
1081 | 0 | { |
1082 | 0 | EncryptionData data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata); |
1083 | 0 | encryption_key = data.compute_encryption_parameters_V5(user_password, owner_password); |
1084 | |
|
1085 | 0 | out_O = data.getO(); |
1086 | 0 | out_U = data.getU(); |
1087 | 0 | out_OE = data.getOE(); |
1088 | 0 | out_UE = data.getUE(); |
1089 | 0 | out_Perms = data.getPerms(); |
1090 | 0 | } |
1091 | | |
1092 | | std::string |
1093 | | QPDF::EncryptionData::compute_encryption_parameters_V5( |
1094 | | char const* user_password, char const* owner_password) |
1095 | 0 | { |
1096 | 0 | auto out_encryption_key = util::random_string(key_bytes); |
1097 | | // Algorithm 8 from the PDF 2.0 |
1098 | 0 | auto validation_salt = util::random_string(8); |
1099 | 0 | auto key_salt = util::random_string(8); |
1100 | 0 | U = hash_V5(user_password, validation_salt, "").append(validation_salt).append(key_salt); |
1101 | 0 | auto intermediate_key = hash_V5(user_password, key_salt, ""); |
1102 | 0 | UE = process_with_aes(intermediate_key, true, out_encryption_key); |
1103 | | // Algorithm 9 from the PDF 2.0 |
1104 | 0 | validation_salt = util::random_string(8); |
1105 | 0 | key_salt = util::random_string(8); |
1106 | 0 | O = hash_V5(owner_password, validation_salt, U) + validation_salt + key_salt; |
1107 | 0 | intermediate_key = hash_V5(owner_password, key_salt, U); |
1108 | 0 | OE = process_with_aes(intermediate_key, true, out_encryption_key); |
1109 | | // Algorithm 10 from the PDF 2.0 |
1110 | 0 | Perms = process_with_aes(out_encryption_key, true, compute_Perms_value_V5_clear()); |
1111 | 0 | return out_encryption_key; |
1112 | 0 | } |
1113 | | |
1114 | | std::string |
1115 | | QPDF::EncryptionData::compute_parameters(char const* user_password, char const* owner_password) |
1116 | 0 | { |
1117 | 0 | if (V < 5) { |
1118 | 0 | compute_encryption_O_U(user_password, owner_password); |
1119 | 0 | return compute_encryption_key(user_password); |
1120 | 0 | } else { |
1121 | 0 | return compute_encryption_parameters_V5(user_password, owner_password); |
1122 | 0 | } |
1123 | 0 | } |
1124 | | |
1125 | | std::string const& |
1126 | | QPDF::getPaddedUserPassword() const |
1127 | 0 | { |
1128 | 0 | return m->encp->user_password; |
1129 | 0 | } |
1130 | | |
1131 | | std::string |
1132 | | QPDF::getTrimmedUserPassword() const |
1133 | 0 | { |
1134 | 0 | std::string result = m->encp->user_password; |
1135 | 0 | trim_user_password(result); |
1136 | 0 | return result; |
1137 | 0 | } |
1138 | | |
1139 | | std::string |
1140 | | QPDF::getEncryptionKey() const |
1141 | 0 | { |
1142 | 0 | return m->encp->encryption_key; |
1143 | 0 | } |
1144 | | |
1145 | | bool |
1146 | | QPDF::isEncrypted() const |
1147 | 0 | { |
1148 | 0 | return m->encp->encrypted; |
1149 | 0 | } |
1150 | | |
1151 | | bool |
1152 | | QPDF::isEncrypted(int& R, int& P) |
1153 | 0 | { |
1154 | 0 | if (!m->encp->encrypted) { |
1155 | 0 | return false; |
1156 | 0 | } |
1157 | 0 | P = m->encp->P(); |
1158 | 0 | R = m->encp->R(); |
1159 | 0 | return true; |
1160 | 0 | } |
1161 | | |
1162 | | bool |
1163 | | QPDF::isEncrypted( |
1164 | | int& R, |
1165 | | int& P, |
1166 | | int& V, |
1167 | | encryption_method_e& stream_method, |
1168 | | encryption_method_e& string_method, |
1169 | | encryption_method_e& file_method) |
1170 | 0 | { |
1171 | 0 | if (!m->encp->encrypted) { |
1172 | 0 | return false; |
1173 | 0 | } |
1174 | 0 | P = m->encp->P(); |
1175 | 0 | R = m->encp->R(); |
1176 | 0 | V = m->encp->encryption_V; |
1177 | 0 | stream_method = m->encp->cf_stream; |
1178 | 0 | string_method = m->encp->cf_string; |
1179 | 0 | file_method = m->encp->cf_file; |
1180 | 0 | return true; |
1181 | 0 | } |
1182 | | |
1183 | | bool |
1184 | | QPDF::ownerPasswordMatched() const |
1185 | 0 | { |
1186 | 0 | return m->encp->owner_password_matched; |
1187 | 0 | } |
1188 | | |
1189 | | bool |
1190 | | QPDF::userPasswordMatched() const |
1191 | 0 | { |
1192 | 0 | return m->encp->user_password_matched; |
1193 | 0 | } |
1194 | | |
1195 | | bool |
1196 | | QPDF::allowAccessibility() |
1197 | 0 | { |
1198 | 0 | return m->encp->R() < 3 ? m->encp->P(5) : m->encp->P(10); |
1199 | 0 | } |
1200 | | |
1201 | | bool |
1202 | | QPDF::allowExtractAll() |
1203 | 0 | { |
1204 | 0 | return m->encp->P(5); |
1205 | 0 | } |
1206 | | |
1207 | | bool |
1208 | | QPDF::allowPrintLowRes() |
1209 | 0 | { |
1210 | 0 | return m->encp->P(3); |
1211 | 0 | } |
1212 | | |
1213 | | bool |
1214 | | QPDF::allowPrintHighRes() |
1215 | 0 | { |
1216 | 0 | return allowPrintLowRes() && (m->encp->R() < 3 ? true : m->encp->P(12)); |
1217 | 0 | } |
1218 | | |
1219 | | bool |
1220 | | QPDF::allowModifyAssembly() |
1221 | 0 | { |
1222 | 0 | return m->encp->R() < 3 ? m->encp->P(4) : m->encp->P(11); |
1223 | 0 | } |
1224 | | |
1225 | | bool |
1226 | | QPDF::allowModifyForm() |
1227 | 0 | { |
1228 | 0 | return m->encp->R() < 3 ? m->encp->P(6) : m->encp->P(9); |
1229 | 0 | } |
1230 | | |
1231 | | bool |
1232 | | QPDF::allowModifyAnnotation() |
1233 | 0 | { |
1234 | 0 | return m->encp->P(6); |
1235 | 0 | } |
1236 | | |
1237 | | bool |
1238 | | QPDF::allowModifyOther() |
1239 | 0 | { |
1240 | 0 | return m->encp->P(4); |
1241 | 0 | } |
1242 | | |
1243 | | bool |
1244 | | QPDF::allowModifyAll() |
1245 | 0 | { |
1246 | 0 | return allowModifyAnnotation() && allowModifyOther() && |
1247 | 0 | (m->encp->R() < 3 ? true : allowModifyForm() && allowModifyAssembly()); |
1248 | 0 | } |