Coverage Report

Created: 2025-10-10 06:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
1.89k
{
81
1.89k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
1.89k
  int ci, blkn, dctbl, actbl;
83
1.89k
  d_derived_tbl **pdtbl;
84
1.89k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
1.89k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.88k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
26
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
5.81k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
3.92k
    compptr = cinfo->cur_comp_info[ci];
96
3.92k
    dctbl = compptr->dc_tbl_no;
97
3.92k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
3.92k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
3.92k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
3.92k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
3.92k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
3.92k
    entropy->saved.last_dc_val[ci] = 0;
106
3.92k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
7.67k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
5.77k
    ci = cinfo->MCU_membership[blkn];
111
5.77k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
5.77k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
5.77k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
5.77k
    if (compptr->component_needed) {
117
5.77k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
5.77k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
5.77k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
5.77k
  }
124
125
  /* Initialize bitread state variables */
126
1.89k
  entropy->bitstate.bits_left = 0;
127
1.89k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
1.89k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
1.89k
  entropy->restarts_to_go = cinfo->restart_interval;
132
1.89k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
18.3k
{
146
18.3k
  JHUFF_TBL *htbl;
147
18.3k
  d_derived_tbl *dtbl;
148
18.3k
  int p, i, l, si, numsymbols;
149
18.3k
  int lookbits, ctr;
150
18.3k
  char huffsize[257];
151
18.3k
  unsigned int huffcode[257];
152
18.3k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
18.3k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
9
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
18.3k
  htbl =
162
18.3k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
18.3k
  if (htbl == NULL)
164
9
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
18.3k
  if (*pdtbl == NULL)
168
8.53k
    *pdtbl = (d_derived_tbl *)
169
8.53k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
8.53k
                                  sizeof(d_derived_tbl));
171
18.3k
  dtbl = *pdtbl;
172
18.3k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
18.3k
  p = 0;
177
311k
  for (l = 1; l <= 16; l++) {
178
293k
    i = (int)htbl->bits[l];
179
293k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
1.11M
    while (i--)
182
826k
      huffsize[p++] = (char)l;
183
293k
  }
184
18.3k
  huffsize[p] = 0;
185
18.3k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
18.3k
  code = 0;
191
18.3k
  si = huffsize[0];
192
18.3k
  p = 0;
193
178k
  while (huffsize[p]) {
194
986k
    while (((int)huffsize[p]) == si) {
195
826k
      huffcode[p++] = code;
196
826k
      code++;
197
826k
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
160k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
10
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
160k
    code <<= 1;
204
160k
    si++;
205
160k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
18.3k
  p = 0;
210
311k
  for (l = 1; l <= 16; l++) {
211
293k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
148k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
148k
      p += htbl->bits[l];
217
148k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
148k
    } else {
219
144k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
144k
    }
221
293k
  }
222
18.3k
  dtbl->valoffset[17] = 0;
223
18.3k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
4.70M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
4.68M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
18.3k
  p = 0;
236
164k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
390k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
244k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
4.70M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
4.45M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
4.45M
        lookbits++;
244
4.45M
      }
245
244k
    }
246
146k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
18.3k
  if (isDC) {
255
102k
    for (i = 0; i < numsymbols; i++) {
256
93.1k
      int sym = htbl->huffval[i];
257
93.1k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
25
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
93.1k
    }
260
9.39k
  }
261
18.3k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
14.5M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
1.80M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
1.80M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
1.80M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
1.80M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
1.80M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
14.5M
    while (bits_left < MIN_GET_BITS) {
303
12.7M
      register int c;
304
305
      /* Attempt to read a byte */
306
12.7M
      if (bytes_in_buffer == 0) {
307
540
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
540
        next_input_byte = cinfo->src->next_input_byte;
310
540
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
540
      }
312
12.7M
      bytes_in_buffer--;
313
12.7M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
12.7M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
102k
        do {
323
102k
          if (bytes_in_buffer == 0) {
324
5
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
5
            next_input_byte = cinfo->src->next_input_byte;
327
5
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
5
          }
329
102k
          bytes_in_buffer--;
330
102k
          c = *next_input_byte++;
331
102k
        } while (c == 0xFF);
332
333
70.2k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
61.5k
          c = 0xFF;
336
61.5k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
8.71k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
8.71k
          goto no_more_bytes;
348
8.71k
        }
349
70.2k
      }
350
351
      /* OK, load c into get_buffer */
352
12.7M
      get_buffer = (get_buffer << 8) | c;
353
12.7M
      bits_left += 8;
354
12.7M
    } /* end while */
355
1.79M
  } else {
356
17.7k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
17.7k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.04k
      if (!cinfo->entropy->insufficient_data) {
368
1.04k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
1.04k
        cinfo->entropy->insufficient_data = TRUE;
370
1.04k
      }
371
      /* Fill the buffer with zero bits */
372
1.04k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.04k
      bits_left = MIN_GET_BITS;
374
1.04k
    }
375
17.7k
  }
376
377
  /* Unload the local registers */
378
1.80M
  state->next_input_byte = next_input_byte;
379
1.80M
  state->bytes_in_buffer = bytes_in_buffer;
380
1.80M
  state->get_buffer = get_buffer;
381
1.80M
  state->bits_left = bits_left;
382
383
1.80M
  return TRUE;
384
1.80M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
2.50M
#define GET_BYTE { \
392
2.50M
  register int c0, c1; \
393
2.50M
  c0 = *buffer++; \
394
2.50M
  c1 = *buffer; \
395
2.50M
  /* Pre-execute most common case */ \
396
2.50M
  get_buffer = (get_buffer << 8) | c0; \
397
2.50M
  bits_left += 8; \
398
2.50M
  if (c0 == 0xFF) { \
399
177k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
177k
    buffer++; \
401
177k
    if (c1 != 0) { \
402
79.1k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
79.1k
      cinfo->unread_marker = c1; \
404
79.1k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
79.1k
      buffer -= 2; \
406
79.1k
      get_buffer &= ~0xFF; \
407
79.1k
    } \
408
177k
  } \
409
2.50M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
5.08M
  if (bits_left <= 16) { \
416
417k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
417k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
283k
{
440
283k
  register int l = min_bits;
441
283k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
283k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
283k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
616k
  while (code > htbl->maxcode[l]) {
453
333k
    code <<= 1;
454
333k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
333k
    code |= GET_BITS(1);
456
333k
    l++;
457
333k
  }
458
459
  /* Unload the local registers */
460
283k
  state->get_buffer = get_buffer;
461
283k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
283k
  if (l > 16) {
466
632
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
632
    return 0;                   /* fake a zero as the safest result */
468
632
  }
469
470
282k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
283k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
4.17M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
4.17M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.43k
{
514
1.43k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.43k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.43k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.43k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.43k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.39k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.96k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.43k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.43k
  if (cinfo->unread_marker == 0)
539
1.41k
    entropy->pub.insufficient_data = FALSE;
540
541
1.43k
  return TRUE;
542
1.43k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
133k
{
554
133k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
133k
  BITREAD_STATE_VARS;
556
133k
  int blkn;
557
133k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
133k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
133k
  state = entropy->saved;
563
564
455k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
322k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
322k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
322k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
322k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
322k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
322k
    if (s) {
575
141k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
141k
      r = GET_BITS(s);
577
141k
      s = HUFF_EXTEND(r, s);
578
141k
    }
579
580
322k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
322k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
322k
      s += state.last_dc_val[ci];
592
322k
      state.last_dc_val[ci] = s;
593
322k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
322k
        (*block)[0] = (JCOEF)s;
596
322k
      }
597
322k
    }
598
599
322k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
2.10M
      for (k = 1; k < DCTSIZE2; k++) {
604
2.09M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
2.09M
        r = s >> 4;
607
2.09M
        s &= 15;
608
609
2.09M
        if (s) {
610
1.77M
          k += r;
611
1.77M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.77M
          r = GET_BITS(s);
613
1.77M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.77M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.77M
        } else {
620
322k
          if (r != 15)
621
315k
            break;
622
6.46k
          k += 15;
623
6.46k
        }
624
2.09M
      }
625
626
322k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
278
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
278
    }
647
322k
  }
648
649
  /* Completed MCU, so update state */
650
133k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
133k
  entropy->saved = state;
652
133k
  return TRUE;
653
133k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
141k
{
665
141k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
141k
  BITREAD_STATE_VARS;
667
141k
  JOCTET *buffer;
668
141k
  int blkn;
669
141k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
141k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
141k
  buffer = (JOCTET *)br_state.next_input_byte;
675
141k
  state = entropy->saved;
676
677
517k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
375k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
375k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
375k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
375k
    register int s, k, r, l;
682
683
375k
    HUFF_DECODE_FAST(s, l, dctbl);
684
375k
    if (s) {
685
179k
      FILL_BIT_BUFFER_FAST
686
179k
      r = GET_BITS(s);
687
179k
      s = HUFF_EXTEND(r, s);
688
179k
    }
689
690
375k
    if (entropy->dc_needed[blkn]) {
691
375k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
375k
      s += state.last_dc_val[ci];
696
375k
      state.last_dc_val[ci] = s;
697
375k
      if (block)
698
375k
        (*block)[0] = (JCOEF)s;
699
375k
    }
700
701
375k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.46M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.44M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.44M
        r = s >> 4;
706
2.44M
        s &= 15;
707
708
2.44M
        if (s) {
709
2.08M
          k += r;
710
2.08M
          FILL_BIT_BUFFER_FAST
711
2.08M
          r = GET_BITS(s);
712
2.08M
          s = HUFF_EXTEND(r, s);
713
2.08M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
2.08M
        } else {
715
364k
          if (r != 15) break;
716
6.92k
          k += 15;
717
6.92k
        }
718
2.44M
      }
719
720
375k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
375k
  }
738
739
141k
  if (cinfo->unread_marker != 0) {
740
1.33k
    cinfo->unread_marker = 0;
741
1.33k
    return FALSE;
742
1.33k
  }
743
744
140k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
140k
  br_state.next_input_byte = buffer;
746
140k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
140k
  entropy->saved = state;
748
140k
  return TRUE;
749
141k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
273k
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
273k
{
772
273k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
273k
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
273k
  if (cinfo->restart_interval) {
777
74.9k
    if (entropy->restarts_to_go == 0)
778
1.43k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
74.9k
    usefast = 0;
781
74.9k
  }
782
783
273k
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
195k
      cinfo->unread_marker != 0)
785
83.9k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
273k
  if (!entropy->pub.insufficient_data) {
791
792
273k
    if (usefast) {
793
141k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
141k
    } else {
795
133k
use_slow:
796
133k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
133k
    }
798
799
273k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
273k
  if (cinfo->restart_interval)
803
74.8k
    entropy->restarts_to_go--;
804
805
273k
  return TRUE;
806
273k
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.90k
{
816
1.90k
  huff_entropy_ptr entropy;
817
1.90k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.90k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.90k
  entropy = (huff_entropy_ptr)
826
1.90k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.90k
                                sizeof(huff_entropy_decoder));
828
1.90k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.90k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.90k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
9.51k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
7.60k
  }
836
1.90k
}