Coverage Report

Created: 2026-01-25 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib/deflate.c
Line
Count
Source
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2025 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available at https://datatracker.ietf.org/doc/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.3.1.2 Copyright 1995-2025 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
typedef enum {
64
    need_more,      /* block not completed, need more input or more output */
65
    block_done,     /* block flush performed */
66
    finish_started, /* finish started, need only more output at next deflate */
67
    finish_done     /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
 * Local data
83
 */
84
85
0
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
0
#  define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
 * the desired pack level (0..9). The values given below have been tuned to
95
 * exclude worst case performance for pathological files. Better values may be
96
 * found for specific files.
97
 */
98
typedef struct config_s {
99
   ush good_length; /* reduce lazy search above this match length */
100
   ush max_lazy;    /* do not perform lazy search above this match length */
101
   ush nice_length; /* quit search above this match length */
102
   ush max_chain;
103
   compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/*      good lazy nice chain */
109
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/*      good lazy nice chain */
114
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4,    5, 16,    8, deflate_fast},
117
/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120
/* 5 */ {8,   16, 32,   32, deflate_slow},
121
/* 6 */ {8,   16, 128, 128, deflate_slow},
122
/* 7 */ {8,   32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
 * meaning.
130
 */
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
 * Update a hash value with the given input byte
137
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138
 *    characters, so that a running hash key can be computed from the previous
139
 *    key instead of complete recalculation each time.
140
 */
141
0
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
 * Insert string str in the dictionary and set match_head to the previous head
146
 * of the hash chain (the most recent string with same hash key). Return
147
 * the previous length of the hash chain.
148
 * If this file is compiled with -DFASTEST, the compression level is forced
149
 * to 1, and no hash chains are maintained.
150
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151
 *    characters and the first MIN_MATCH bytes of str are valid (except for
152
 *    the last MIN_MATCH-1 bytes of the input file).
153
 */
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
    match_head = s->head[s->ins_h], \
158
    s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
0
    s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
 * prev[] will be initialized on the fly.
169
 */
170
#define CLEAR_HASH(s) \
171
0
    do { \
172
0
        s->head[s->hash_size - 1] = NIL; \
173
0
        zmemzero((Bytef *)s->head, \
174
0
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
0
        s->slid = 0; \
176
0
    } while (0)
177
178
/* ===========================================================================
179
 * Slide the hash table when sliding the window down (could be avoided with 32
180
 * bit values at the expense of memory usage). We slide even when level == 0 to
181
 * keep the hash table consistent if we switch back to level > 0 later.
182
 */
183
#if defined(__has_feature)
184
#  if __has_feature(memory_sanitizer)
185
     __attribute__((no_sanitize("memory")))
186
#  endif
187
#endif
188
0
local void slide_hash(deflate_state *s) {
189
0
    unsigned n, m;
190
0
    Posf *p;
191
0
    uInt wsize = s->w_size;
192
193
0
    n = s->hash_size;
194
0
    p = &s->head[n];
195
0
    do {
196
0
        m = *--p;
197
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
198
0
    } while (--n);
199
0
#ifndef FASTEST
200
0
    n = wsize;
201
0
    p = &s->prev[n];
202
0
    do {
203
0
        m = *--p;
204
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
205
        /* If n is not on any hash chain, prev[n] is garbage but
206
         * its value will never be used.
207
         */
208
0
    } while (--n);
209
0
#endif
210
0
    s->slid = 1;
211
0
}
212
213
/* ===========================================================================
214
 * Read a new buffer from the current input stream, update the adler32
215
 * and total number of bytes read.  All deflate() input goes through
216
 * this function so some applications may wish to modify it to avoid
217
 * allocating a large strm->next_in buffer and copying from it.
218
 * (See also flush_pending()).
219
 */
220
0
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
221
0
    unsigned len = strm->avail_in;
222
223
0
    if (len > size) len = size;
224
0
    if (len == 0) return 0;
225
226
0
    strm->avail_in  -= len;
227
228
0
    zmemcpy(buf, strm->next_in, len);
229
0
    if (strm->state->wrap == 1) {
230
0
        strm->adler = adler32(strm->adler, buf, len);
231
0
    }
232
0
#ifdef GZIP
233
0
    else if (strm->state->wrap == 2) {
234
0
        strm->adler = crc32(strm->adler, buf, len);
235
0
    }
236
0
#endif
237
0
    strm->next_in  += len;
238
0
    strm->total_in += len;
239
240
0
    return len;
241
0
}
242
243
/* ===========================================================================
244
 * Fill the window when the lookahead becomes insufficient.
245
 * Updates strstart and lookahead.
246
 *
247
 * IN assertion: lookahead < MIN_LOOKAHEAD
248
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249
 *    At least one byte has been read, or avail_in == 0; reads are
250
 *    performed for at least two bytes (required for the zip translate_eol
251
 *    option -- not supported here).
252
 */
253
0
local void fill_window(deflate_state *s) {
254
0
    unsigned n;
255
0
    unsigned more;    /* Amount of free space at the end of the window. */
256
0
    uInt wsize = s->w_size;
257
258
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
259
260
0
    do {
261
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
262
263
        /* Deal with !@#$% 64K limit: */
264
0
        if (sizeof(int) <= 2) {
265
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
266
0
                more = wsize;
267
268
0
            } else if (more == (unsigned)(-1)) {
269
                /* Very unlikely, but possible on 16 bit machine if
270
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
271
                 */
272
0
                more--;
273
0
            }
274
0
        }
275
276
        /* If the window is almost full and there is insufficient lookahead,
277
         * move the upper half to the lower one to make room in the upper half.
278
         */
279
0
        if (s->strstart >= wsize + MAX_DIST(s)) {
280
281
0
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
282
0
            s->match_start -= wsize;
283
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
284
0
            s->block_start -= (long) wsize;
285
0
            if (s->insert > s->strstart)
286
0
                s->insert = s->strstart;
287
0
            slide_hash(s);
288
0
            more += wsize;
289
0
        }
290
0
        if (s->strm->avail_in == 0) break;
291
292
        /* If there was no sliding:
293
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
294
         *    more == window_size - lookahead - strstart
295
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
296
         * => more >= window_size - 2*WSIZE + 2
297
         * In the BIG_MEM or MMAP case (not yet supported),
298
         *   window_size == input_size + MIN_LOOKAHEAD  &&
299
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
300
         * Otherwise, window_size == 2*WSIZE so more >= 2.
301
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
302
         */
303
0
        Assert(more >= 2, "more < 2");
304
305
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
306
0
        s->lookahead += n;
307
308
        /* Initialize the hash value now that we have some input: */
309
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
310
0
            uInt str = s->strstart - s->insert;
311
0
            s->ins_h = s->window[str];
312
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
313
#if MIN_MATCH != 3
314
            Call UPDATE_HASH() MIN_MATCH-3 more times
315
#endif
316
0
            while (s->insert) {
317
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
318
0
#ifndef FASTEST
319
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
320
0
#endif
321
0
                s->head[s->ins_h] = (Pos)str;
322
0
                str++;
323
0
                s->insert--;
324
0
                if (s->lookahead + s->insert < MIN_MATCH)
325
0
                    break;
326
0
            }
327
0
        }
328
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
329
         * but this is not important since only literal bytes will be emitted.
330
         */
331
332
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
333
334
    /* If the WIN_INIT bytes after the end of the current data have never been
335
     * written, then zero those bytes in order to avoid memory check reports of
336
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
337
     * the longest match routines.  Update the high water mark for the next
338
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
339
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
340
     */
341
0
    if (s->high_water < s->window_size) {
342
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
343
0
        ulg init;
344
345
0
        if (s->high_water < curr) {
346
            /* Previous high water mark below current data -- zero WIN_INIT
347
             * bytes or up to end of window, whichever is less.
348
             */
349
0
            init = s->window_size - curr;
350
0
            if (init > WIN_INIT)
351
0
                init = WIN_INIT;
352
0
            zmemzero(s->window + curr, (unsigned)init);
353
0
            s->high_water = curr + init;
354
0
        }
355
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
356
            /* High water mark at or above current data, but below current data
357
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
358
             * to end of window, whichever is less.
359
             */
360
0
            init = (ulg)curr + WIN_INIT - s->high_water;
361
0
            if (init > s->window_size - s->high_water)
362
0
                init = s->window_size - s->high_water;
363
0
            zmemzero(s->window + s->high_water, (unsigned)init);
364
0
            s->high_water += init;
365
0
        }
366
0
    }
367
368
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
369
0
           "not enough room for search");
370
0
}
371
372
/* ========================================================================= */
373
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
374
0
                         int stream_size) {
375
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
376
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
377
    /* To do: ignore strm->next_in if we use it as window */
378
0
}
379
380
/* ========================================================================= */
381
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
382
                          int windowBits, int memLevel, int strategy,
383
                          const char *version, int stream_size) {
384
    deflate_state *s;
385
    int wrap = 1;
386
    static const char my_version[] = ZLIB_VERSION;
387
388
    if (version == Z_NULL || version[0] != my_version[0] ||
389
        stream_size != sizeof(z_stream)) {
390
        return Z_VERSION_ERROR;
391
    }
392
    if (strm == Z_NULL) return Z_STREAM_ERROR;
393
394
    strm->msg = Z_NULL;
395
    if (strm->zalloc == (alloc_func)0) {
396
#ifdef Z_SOLO
397
        return Z_STREAM_ERROR;
398
#else
399
        strm->zalloc = zcalloc;
400
        strm->opaque = (voidpf)0;
401
#endif
402
    }
403
    if (strm->zfree == (free_func)0)
404
#ifdef Z_SOLO
405
        return Z_STREAM_ERROR;
406
#else
407
        strm->zfree = zcfree;
408
#endif
409
410
#ifdef FASTEST
411
    if (level != 0) level = 1;
412
#else
413
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
414
#endif
415
416
    if (windowBits < 0) { /* suppress zlib wrapper */
417
        wrap = 0;
418
        if (windowBits < -15)
419
            return Z_STREAM_ERROR;
420
        windowBits = -windowBits;
421
    }
422
#ifdef GZIP
423
    else if (windowBits > 15) {
424
        wrap = 2;       /* write gzip wrapper instead */
425
        windowBits -= 16;
426
    }
427
#endif
428
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
429
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
430
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
431
        return Z_STREAM_ERROR;
432
    }
433
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
434
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
435
    if (s == Z_NULL) return Z_MEM_ERROR;
436
    zmemzero(s, sizeof(deflate_state));
437
    strm->state = (struct internal_state FAR *)s;
438
    s->strm = strm;
439
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
440
441
    s->wrap = wrap;
442
    s->gzhead = Z_NULL;
443
    s->w_bits = (uInt)windowBits;
444
    s->w_size = 1 << s->w_bits;
445
    s->w_mask = s->w_size - 1;
446
447
    s->hash_bits = (uInt)memLevel + 7;
448
    s->hash_size = 1 << s->hash_bits;
449
    s->hash_mask = s->hash_size - 1;
450
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
451
452
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
453
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
454
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
455
456
    s->high_water = 0;      /* nothing written to s->window yet */
457
458
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
459
460
    /* We overlay pending_buf and sym_buf. This works since the average size
461
     * for length/distance pairs over any compressed block is assured to be 31
462
     * bits or less.
463
     *
464
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
465
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
466
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
467
     * possible fixed-codes length/distance pair is then 31 bits total.
468
     *
469
     * sym_buf starts one-fourth of the way into pending_buf. So there are
470
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
471
     * in sym_buf is three bytes -- two for the distance and one for the
472
     * literal/length. As each symbol is consumed, the pointer to the next
473
     * sym_buf value to read moves forward three bytes. From that symbol, up to
474
     * 31 bits are written to pending_buf. The closest the written pending_buf
475
     * bits gets to the next sym_buf symbol to read is just before the last
476
     * code is written. At that time, 31*(n - 2) bits have been written, just
477
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
478
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
479
     * symbols are written.) The closest the writing gets to what is unread is
480
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
481
     * can range from 128 to 32768.
482
     *
483
     * Therefore, at a minimum, there are 142 bits of space between what is
484
     * written and what is read in the overlain buffers, so the symbols cannot
485
     * be overwritten by the compressed data. That space is actually 139 bits,
486
     * due to the three-bit fixed-code block header.
487
     *
488
     * That covers the case where either Z_FIXED is specified, forcing fixed
489
     * codes, or when the use of fixed codes is chosen, because that choice
490
     * results in a smaller compressed block than dynamic codes. That latter
491
     * condition then assures that the above analysis also covers all dynamic
492
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
493
     * fewer bits than a fixed-code block would for the same set of symbols.
494
     * Therefore its average symbol length is assured to be less than 31. So
495
     * the compressed data for a dynamic block also cannot overwrite the
496
     * symbols from which it is being constructed.
497
     */
498
499
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
500
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
501
502
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
503
        s->pending_buf == Z_NULL) {
504
        s->status = FINISH_STATE;
505
        strm->msg = ERR_MSG(Z_MEM_ERROR);
506
        deflateEnd (strm);
507
        return Z_MEM_ERROR;
508
    }
509
#ifdef LIT_MEM
510
    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
511
    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
512
    s->sym_end = s->lit_bufsize - 1;
513
#else
514
    s->sym_buf = s->pending_buf + s->lit_bufsize;
515
    s->sym_end = (s->lit_bufsize - 1) * 3;
516
#endif
517
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
518
     * on 16 bit machines and because stored blocks are restricted to
519
     * 64K-1 bytes.
520
     */
521
522
    s->level = level;
523
    s->strategy = strategy;
524
    s->method = (Byte)method;
525
526
    return deflateReset(strm);
527
}
528
529
/* =========================================================================
530
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
531
 */
532
0
local int deflateStateCheck(z_streamp strm) {
533
0
    deflate_state *s;
534
0
    if (strm == Z_NULL ||
535
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
536
0
        return 1;
537
0
    s = strm->state;
538
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
539
0
#ifdef GZIP
540
0
                                           s->status != GZIP_STATE &&
541
0
#endif
542
0
                                           s->status != EXTRA_STATE &&
543
0
                                           s->status != NAME_STATE &&
544
0
                                           s->status != COMMENT_STATE &&
545
0
                                           s->status != HCRC_STATE &&
546
0
                                           s->status != BUSY_STATE &&
547
0
                                           s->status != FINISH_STATE))
548
0
        return 1;
549
0
    return 0;
550
0
}
551
552
/* ========================================================================= */
553
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
554
0
                                 uInt  dictLength) {
555
0
    deflate_state *s;
556
0
    uInt str, n;
557
0
    int wrap;
558
0
    unsigned avail;
559
0
    z_const unsigned char *next;
560
561
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
562
0
        return Z_STREAM_ERROR;
563
0
    s = strm->state;
564
0
    wrap = s->wrap;
565
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
566
0
        return Z_STREAM_ERROR;
567
568
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
569
0
    if (wrap == 1)
570
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
571
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
572
573
    /* if dictionary would fill window, just replace the history */
574
0
    if (dictLength >= s->w_size) {
575
0
        if (wrap == 0) {            /* already empty otherwise */
576
0
            CLEAR_HASH(s);
577
0
            s->strstart = 0;
578
0
            s->block_start = 0L;
579
0
            s->insert = 0;
580
0
        }
581
0
        dictionary += dictLength - s->w_size;  /* use the tail */
582
0
        dictLength = s->w_size;
583
0
    }
584
585
    /* insert dictionary into window and hash */
586
0
    avail = strm->avail_in;
587
0
    next = strm->next_in;
588
0
    strm->avail_in = dictLength;
589
0
    strm->next_in = (z_const Bytef *)dictionary;
590
0
    fill_window(s);
591
0
    while (s->lookahead >= MIN_MATCH) {
592
0
        str = s->strstart;
593
0
        n = s->lookahead - (MIN_MATCH-1);
594
0
        do {
595
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
596
0
#ifndef FASTEST
597
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
598
0
#endif
599
0
            s->head[s->ins_h] = (Pos)str;
600
0
            str++;
601
0
        } while (--n);
602
0
        s->strstart = str;
603
0
        s->lookahead = MIN_MATCH-1;
604
0
        fill_window(s);
605
0
    }
606
0
    s->strstart += s->lookahead;
607
0
    s->block_start = (long)s->strstart;
608
0
    s->insert = s->lookahead;
609
0
    s->lookahead = 0;
610
0
    s->match_length = s->prev_length = MIN_MATCH-1;
611
0
    s->match_available = 0;
612
0
    strm->next_in = next;
613
0
    strm->avail_in = avail;
614
0
    s->wrap = wrap;
615
0
    return Z_OK;
616
0
}
617
618
/* ========================================================================= */
619
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
620
0
                                 uInt *dictLength) {
621
0
    deflate_state *s;
622
0
    uInt len;
623
624
0
    if (deflateStateCheck(strm))
625
0
        return Z_STREAM_ERROR;
626
0
    s = strm->state;
627
0
    len = s->strstart + s->lookahead;
628
0
    if (len > s->w_size)
629
0
        len = s->w_size;
630
0
    if (dictionary != Z_NULL && len)
631
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
632
0
    if (dictLength != Z_NULL)
633
0
        *dictLength = len;
634
0
    return Z_OK;
635
0
}
636
637
/* ========================================================================= */
638
0
int ZEXPORT deflateResetKeep(z_streamp strm) {
639
0
    deflate_state *s;
640
641
0
    if (deflateStateCheck(strm)) {
642
0
        return Z_STREAM_ERROR;
643
0
    }
644
645
0
    strm->total_in = strm->total_out = 0;
646
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
647
0
    strm->data_type = Z_UNKNOWN;
648
649
0
    s = (deflate_state *)strm->state;
650
0
    s->pending = 0;
651
0
    s->pending_out = s->pending_buf;
652
653
0
    if (s->wrap < 0) {
654
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
655
0
    }
656
0
    s->status =
657
0
#ifdef GZIP
658
0
        s->wrap == 2 ? GZIP_STATE :
659
0
#endif
660
0
        INIT_STATE;
661
0
    strm->adler =
662
0
#ifdef GZIP
663
0
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
664
0
#endif
665
0
        adler32(0L, Z_NULL, 0);
666
0
    s->last_flush = -2;
667
668
0
    _tr_init(s);
669
670
0
    return Z_OK;
671
0
}
672
673
/* ===========================================================================
674
 * Initialize the "longest match" routines for a new zlib stream
675
 */
676
0
local void lm_init(deflate_state *s) {
677
0
    s->window_size = (ulg)2L*s->w_size;
678
679
0
    CLEAR_HASH(s);
680
681
    /* Set the default configuration parameters:
682
     */
683
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
684
0
    s->good_match       = configuration_table[s->level].good_length;
685
0
    s->nice_match       = configuration_table[s->level].nice_length;
686
0
    s->max_chain_length = configuration_table[s->level].max_chain;
687
688
0
    s->strstart = 0;
689
0
    s->block_start = 0L;
690
0
    s->lookahead = 0;
691
0
    s->insert = 0;
692
0
    s->match_length = s->prev_length = MIN_MATCH-1;
693
0
    s->match_available = 0;
694
0
    s->ins_h = 0;
695
0
}
696
697
/* ========================================================================= */
698
0
int ZEXPORT deflateReset(z_streamp strm) {
699
0
    int ret;
700
701
0
    ret = deflateResetKeep(strm);
702
0
    if (ret == Z_OK)
703
0
        lm_init(strm->state);
704
0
    return ret;
705
0
}
706
707
/* ========================================================================= */
708
0
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
709
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
710
0
        return Z_STREAM_ERROR;
711
0
    strm->state->gzhead = head;
712
0
    return Z_OK;
713
0
}
714
715
/* ========================================================================= */
716
0
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
717
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
718
0
    if (pending != Z_NULL)
719
0
        *pending = strm->state->pending;
720
0
    if (bits != Z_NULL)
721
0
        *bits = strm->state->bi_valid;
722
0
    return Z_OK;
723
0
}
724
725
/* ========================================================================= */
726
0
int ZEXPORT deflateUsed(z_streamp strm, int *bits) {
727
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
728
0
    if (bits != Z_NULL)
729
0
        *bits = strm->state->bi_used;
730
0
    return Z_OK;
731
0
}
732
733
/* ========================================================================= */
734
0
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
735
0
    deflate_state *s;
736
0
    int put;
737
738
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
739
0
    s = strm->state;
740
#ifdef LIT_MEM
741
    if (bits < 0 || bits > 16 ||
742
        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
743
        return Z_BUF_ERROR;
744
#else
745
0
    if (bits < 0 || bits > 16 ||
746
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
747
0
        return Z_BUF_ERROR;
748
0
#endif
749
0
    do {
750
0
        put = Buf_size - s->bi_valid;
751
0
        if (put > bits)
752
0
            put = bits;
753
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
754
0
        s->bi_valid += put;
755
0
        _tr_flush_bits(s);
756
0
        value >>= put;
757
0
        bits -= put;
758
0
    } while (bits);
759
0
    return Z_OK;
760
0
}
761
762
/* ========================================================================= */
763
0
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
764
0
    deflate_state *s;
765
0
    compress_func func;
766
767
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
768
0
    s = strm->state;
769
770
#ifdef FASTEST
771
    if (level != 0) level = 1;
772
#else
773
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
774
0
#endif
775
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
776
0
        return Z_STREAM_ERROR;
777
0
    }
778
0
    func = configuration_table[s->level].func;
779
780
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
781
0
        s->last_flush != -2) {
782
        /* Flush the last buffer: */
783
0
        int err = deflate(strm, Z_BLOCK);
784
0
        if (err == Z_STREAM_ERROR)
785
0
            return err;
786
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
787
0
            return Z_BUF_ERROR;
788
0
    }
789
0
    if (s->level != level) {
790
0
        if (s->level == 0 && s->matches != 0) {
791
0
            if (s->matches == 1)
792
0
                slide_hash(s);
793
0
            else
794
0
                CLEAR_HASH(s);
795
0
            s->matches = 0;
796
0
        }
797
0
        s->level = level;
798
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
799
0
        s->good_match       = configuration_table[level].good_length;
800
0
        s->nice_match       = configuration_table[level].nice_length;
801
0
        s->max_chain_length = configuration_table[level].max_chain;
802
0
    }
803
0
    s->strategy = strategy;
804
0
    return Z_OK;
805
0
}
806
807
/* ========================================================================= */
808
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
809
0
                        int nice_length, int max_chain) {
810
0
    deflate_state *s;
811
812
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
813
0
    s = strm->state;
814
0
    s->good_match = (uInt)good_length;
815
0
    s->max_lazy_match = (uInt)max_lazy;
816
0
    s->nice_match = nice_length;
817
0
    s->max_chain_length = (uInt)max_chain;
818
0
    return Z_OK;
819
0
}
820
821
/* =========================================================================
822
 * For the default windowBits of 15 and memLevel of 8, this function returns a
823
 * close to exact, as well as small, upper bound on the compressed size. This
824
 * is an expansion of ~0.03%, plus a small constant.
825
 *
826
 * For any setting other than those defaults for windowBits and memLevel, one
827
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
828
 * ~13%, plus a small constant.
829
 *
830
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
831
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
832
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
833
 * expansion results from five bytes of header for each stored block.
834
 *
835
 * The larger expansion of 13% results from a window size less than or equal to
836
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
837
 * the data being compressed may have slid out of the sliding window, impeding
838
 * a stored block from being emitted. Then the only choice is a fixed or
839
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
840
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
841
 * which this can occur is 255 (memLevel == 2).
842
 *
843
 * Shifts are used to approximate divisions, for speed.
844
 */
845
0
z_size_t ZEXPORT deflateBound_z(z_streamp strm, z_size_t sourceLen) {
846
0
    deflate_state *s;
847
0
    z_size_t fixedlen, storelen, wraplen, bound;
848
849
    /* upper bound for fixed blocks with 9-bit literals and length 255
850
       (memLevel == 2, which is the lowest that may not use stored blocks) --
851
       ~13% overhead plus a small constant */
852
0
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
853
0
               (sourceLen >> 9) + 4;
854
0
    if (fixedlen < sourceLen)
855
0
        fixedlen = (z_size_t)-1;
856
857
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
858
       ~4% overhead plus a small constant */
859
0
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
860
0
               (sourceLen >> 11) + 7;
861
0
    if (storelen < sourceLen)
862
0
        storelen = (z_size_t)-1;
863
864
    /* if can't get parameters, return larger bound plus a wrapper */
865
0
    if (deflateStateCheck(strm)) {
866
0
        bound = fixedlen > storelen ? fixedlen : storelen;
867
0
        return bound + 18 < bound ? (z_size_t)-1 : bound + 18;
868
0
    }
869
870
    /* compute wrapper length */
871
0
    s = strm->state;
872
0
    switch (s->wrap < 0 ? -s->wrap : s->wrap) {
873
0
    case 0:                                 /* raw deflate */
874
0
        wraplen = 0;
875
0
        break;
876
0
    case 1:                                 /* zlib wrapper */
877
0
        wraplen = 6 + (s->strstart ? 4 : 0);
878
0
        break;
879
0
#ifdef GZIP
880
0
    case 2:                                 /* gzip wrapper */
881
0
        wraplen = 18;
882
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
883
0
            Bytef *str;
884
0
            if (s->gzhead->extra != Z_NULL)
885
0
                wraplen += 2 + s->gzhead->extra_len;
886
0
            str = s->gzhead->name;
887
0
            if (str != Z_NULL)
888
0
                do {
889
0
                    wraplen++;
890
0
                } while (*str++);
891
0
            str = s->gzhead->comment;
892
0
            if (str != Z_NULL)
893
0
                do {
894
0
                    wraplen++;
895
0
                } while (*str++);
896
0
            if (s->gzhead->hcrc)
897
0
                wraplen += 2;
898
0
        }
899
0
        break;
900
0
#endif
901
0
    default:                                /* for compiler happiness */
902
0
        wraplen = 18;
903
0
    }
904
905
    /* if not default parameters, return one of the conservative bounds */
906
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7) {
907
0
        bound = s->w_bits <= s->hash_bits && s->level ? fixedlen :
908
0
                                                        storelen;
909
0
        return bound + wraplen < bound ? (z_size_t)-1 : bound + wraplen;
910
0
    }
911
912
    /* default settings: return tight bound for that case -- ~0.03% overhead
913
       plus a small constant */
914
0
    bound = sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
915
0
            (sourceLen >> 25) + 13 - 6 + wraplen;
916
0
    return bound < sourceLen ? (z_size_t)-1 : bound;
917
0
}
918
0
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
919
0
    z_size_t bound = deflateBound_z(strm, sourceLen);
920
0
    return (uLong)bound != bound ? (uLong)-1 : (uLong)bound;
921
0
}
922
923
/* =========================================================================
924
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
925
 * IN assertion: the stream state is correct and there is enough room in
926
 * pending_buf.
927
 */
928
0
local void putShortMSB(deflate_state *s, uInt b) {
929
0
    put_byte(s, (Byte)(b >> 8));
930
0
    put_byte(s, (Byte)(b & 0xff));
931
0
}
932
933
/* =========================================================================
934
 * Flush as much pending output as possible. All deflate() output, except for
935
 * some deflate_stored() output, goes through this function so some
936
 * applications may wish to modify it to avoid allocating a large
937
 * strm->next_out buffer and copying into it. (See also read_buf()).
938
 */
939
0
local void flush_pending(z_streamp strm) {
940
0
    unsigned len;
941
0
    deflate_state *s = strm->state;
942
943
0
    _tr_flush_bits(s);
944
0
    len = s->pending;
945
0
    if (len > strm->avail_out) len = strm->avail_out;
946
0
    if (len == 0) return;
947
948
0
    zmemcpy(strm->next_out, s->pending_out, len);
949
0
    strm->next_out  += len;
950
0
    s->pending_out  += len;
951
0
    strm->total_out += len;
952
0
    strm->avail_out -= len;
953
0
    s->pending      -= len;
954
0
    if (s->pending == 0) {
955
0
        s->pending_out = s->pending_buf;
956
0
    }
957
0
}
958
959
/* ===========================================================================
960
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
961
 */
962
#define HCRC_UPDATE(beg) \
963
0
    do { \
964
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
965
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
966
0
                                s->pending - (beg)); \
967
0
    } while (0)
968
969
/* ========================================================================= */
970
0
int ZEXPORT deflate(z_streamp strm, int flush) {
971
0
    int old_flush; /* value of flush param for previous deflate call */
972
0
    deflate_state *s;
973
974
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
975
0
        return Z_STREAM_ERROR;
976
0
    }
977
0
    s = strm->state;
978
979
0
    if (strm->next_out == Z_NULL ||
980
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
981
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
982
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
983
0
    }
984
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
985
986
0
    old_flush = s->last_flush;
987
0
    s->last_flush = flush;
988
989
    /* Flush as much pending output as possible */
990
0
    if (s->pending != 0) {
991
0
        flush_pending(strm);
992
0
        if (strm->avail_out == 0) {
993
            /* Since avail_out is 0, deflate will be called again with
994
             * more output space, but possibly with both pending and
995
             * avail_in equal to zero. There won't be anything to do,
996
             * but this is not an error situation so make sure we
997
             * return OK instead of BUF_ERROR at next call of deflate:
998
             */
999
0
            s->last_flush = -1;
1000
0
            return Z_OK;
1001
0
        }
1002
1003
    /* Make sure there is something to do and avoid duplicate consecutive
1004
     * flushes. For repeated and useless calls with Z_FINISH, we keep
1005
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
1006
     */
1007
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
1008
0
               flush != Z_FINISH) {
1009
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1010
0
    }
1011
1012
    /* User must not provide more input after the first FINISH: */
1013
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1014
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1015
0
    }
1016
1017
    /* Write the header */
1018
0
    if (s->status == INIT_STATE && s->wrap == 0)
1019
0
        s->status = BUSY_STATE;
1020
0
    if (s->status == INIT_STATE) {
1021
        /* zlib header */
1022
0
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1023
0
        uInt level_flags;
1024
1025
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1026
0
            level_flags = 0;
1027
0
        else if (s->level < 6)
1028
0
            level_flags = 1;
1029
0
        else if (s->level == 6)
1030
0
            level_flags = 2;
1031
0
        else
1032
0
            level_flags = 3;
1033
0
        header |= (level_flags << 6);
1034
0
        if (s->strstart != 0) header |= PRESET_DICT;
1035
0
        header += 31 - (header % 31);
1036
1037
0
        putShortMSB(s, header);
1038
1039
        /* Save the adler32 of the preset dictionary: */
1040
0
        if (s->strstart != 0) {
1041
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
1042
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1043
0
        }
1044
0
        strm->adler = adler32(0L, Z_NULL, 0);
1045
0
        s->status = BUSY_STATE;
1046
1047
        /* Compression must start with an empty pending buffer */
1048
0
        flush_pending(strm);
1049
0
        if (s->pending != 0) {
1050
0
            s->last_flush = -1;
1051
0
            return Z_OK;
1052
0
        }
1053
0
    }
1054
0
#ifdef GZIP
1055
0
    if (s->status == GZIP_STATE) {
1056
        /* gzip header */
1057
0
        strm->adler = crc32(0L, Z_NULL, 0);
1058
0
        put_byte(s, 31);
1059
0
        put_byte(s, 139);
1060
0
        put_byte(s, 8);
1061
0
        if (s->gzhead == Z_NULL) {
1062
0
            put_byte(s, 0);
1063
0
            put_byte(s, 0);
1064
0
            put_byte(s, 0);
1065
0
            put_byte(s, 0);
1066
0
            put_byte(s, 0);
1067
0
            put_byte(s, s->level == 9 ? 2 :
1068
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1069
0
                      4 : 0));
1070
0
            put_byte(s, OS_CODE);
1071
0
            s->status = BUSY_STATE;
1072
1073
            /* Compression must start with an empty pending buffer */
1074
0
            flush_pending(strm);
1075
0
            if (s->pending != 0) {
1076
0
                s->last_flush = -1;
1077
0
                return Z_OK;
1078
0
            }
1079
0
        }
1080
0
        else {
1081
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
1082
0
                     (s->gzhead->hcrc ? 2 : 0) +
1083
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1084
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1085
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1086
0
                     );
1087
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1088
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1089
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1090
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1091
0
            put_byte(s, s->level == 9 ? 2 :
1092
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1093
0
                      4 : 0));
1094
0
            put_byte(s, s->gzhead->os & 0xff);
1095
0
            if (s->gzhead->extra != Z_NULL) {
1096
0
                put_byte(s, s->gzhead->extra_len & 0xff);
1097
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1098
0
            }
1099
0
            if (s->gzhead->hcrc)
1100
0
                strm->adler = crc32(strm->adler, s->pending_buf,
1101
0
                                    s->pending);
1102
0
            s->gzindex = 0;
1103
0
            s->status = EXTRA_STATE;
1104
0
        }
1105
0
    }
1106
0
    if (s->status == EXTRA_STATE) {
1107
0
        if (s->gzhead->extra != Z_NULL) {
1108
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1109
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1110
0
            while (s->pending + left > s->pending_buf_size) {
1111
0
                uInt copy = s->pending_buf_size - s->pending;
1112
0
                zmemcpy(s->pending_buf + s->pending,
1113
0
                        s->gzhead->extra + s->gzindex, copy);
1114
0
                s->pending = s->pending_buf_size;
1115
0
                HCRC_UPDATE(beg);
1116
0
                s->gzindex += copy;
1117
0
                flush_pending(strm);
1118
0
                if (s->pending != 0) {
1119
0
                    s->last_flush = -1;
1120
0
                    return Z_OK;
1121
0
                }
1122
0
                beg = 0;
1123
0
                left -= copy;
1124
0
            }
1125
0
            zmemcpy(s->pending_buf + s->pending,
1126
0
                    s->gzhead->extra + s->gzindex, left);
1127
0
            s->pending += left;
1128
0
            HCRC_UPDATE(beg);
1129
0
            s->gzindex = 0;
1130
0
        }
1131
0
        s->status = NAME_STATE;
1132
0
    }
1133
0
    if (s->status == NAME_STATE) {
1134
0
        if (s->gzhead->name != Z_NULL) {
1135
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1136
0
            int val;
1137
0
            do {
1138
0
                if (s->pending == s->pending_buf_size) {
1139
0
                    HCRC_UPDATE(beg);
1140
0
                    flush_pending(strm);
1141
0
                    if (s->pending != 0) {
1142
0
                        s->last_flush = -1;
1143
0
                        return Z_OK;
1144
0
                    }
1145
0
                    beg = 0;
1146
0
                }
1147
0
                val = s->gzhead->name[s->gzindex++];
1148
0
                put_byte(s, val);
1149
0
            } while (val != 0);
1150
0
            HCRC_UPDATE(beg);
1151
0
            s->gzindex = 0;
1152
0
        }
1153
0
        s->status = COMMENT_STATE;
1154
0
    }
1155
0
    if (s->status == COMMENT_STATE) {
1156
0
        if (s->gzhead->comment != Z_NULL) {
1157
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1158
0
            int val;
1159
0
            do {
1160
0
                if (s->pending == s->pending_buf_size) {
1161
0
                    HCRC_UPDATE(beg);
1162
0
                    flush_pending(strm);
1163
0
                    if (s->pending != 0) {
1164
0
                        s->last_flush = -1;
1165
0
                        return Z_OK;
1166
0
                    }
1167
0
                    beg = 0;
1168
0
                }
1169
0
                val = s->gzhead->comment[s->gzindex++];
1170
0
                put_byte(s, val);
1171
0
            } while (val != 0);
1172
0
            HCRC_UPDATE(beg);
1173
0
        }
1174
0
        s->status = HCRC_STATE;
1175
0
    }
1176
0
    if (s->status == HCRC_STATE) {
1177
0
        if (s->gzhead->hcrc) {
1178
0
            if (s->pending + 2 > s->pending_buf_size) {
1179
0
                flush_pending(strm);
1180
0
                if (s->pending != 0) {
1181
0
                    s->last_flush = -1;
1182
0
                    return Z_OK;
1183
0
                }
1184
0
            }
1185
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1186
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1187
0
            strm->adler = crc32(0L, Z_NULL, 0);
1188
0
        }
1189
0
        s->status = BUSY_STATE;
1190
1191
        /* Compression must start with an empty pending buffer */
1192
0
        flush_pending(strm);
1193
0
        if (s->pending != 0) {
1194
0
            s->last_flush = -1;
1195
0
            return Z_OK;
1196
0
        }
1197
0
    }
1198
0
#endif
1199
1200
    /* Start a new block or continue the current one.
1201
     */
1202
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1203
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1204
0
        block_state bstate;
1205
1206
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1207
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1208
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1209
0
                 (*(configuration_table[s->level].func))(s, flush);
1210
1211
0
        if (bstate == finish_started || bstate == finish_done) {
1212
0
            s->status = FINISH_STATE;
1213
0
        }
1214
0
        if (bstate == need_more || bstate == finish_started) {
1215
0
            if (strm->avail_out == 0) {
1216
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1217
0
            }
1218
0
            return Z_OK;
1219
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1220
             * of deflate should use the same flush parameter to make sure
1221
             * that the flush is complete. So we don't have to output an
1222
             * empty block here, this will be done at next call. This also
1223
             * ensures that for a very small output buffer, we emit at most
1224
             * one empty block.
1225
             */
1226
0
        }
1227
0
        if (bstate == block_done) {
1228
0
            if (flush == Z_PARTIAL_FLUSH) {
1229
0
                _tr_align(s);
1230
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1231
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1232
                /* For a full flush, this empty block will be recognized
1233
                 * as a special marker by inflate_sync().
1234
                 */
1235
0
                if (flush == Z_FULL_FLUSH) {
1236
0
                    CLEAR_HASH(s);             /* forget history */
1237
0
                    if (s->lookahead == 0) {
1238
0
                        s->strstart = 0;
1239
0
                        s->block_start = 0L;
1240
0
                        s->insert = 0;
1241
0
                    }
1242
0
                }
1243
0
            }
1244
0
            flush_pending(strm);
1245
0
            if (strm->avail_out == 0) {
1246
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1247
0
              return Z_OK;
1248
0
            }
1249
0
        }
1250
0
    }
1251
1252
0
    if (flush != Z_FINISH) return Z_OK;
1253
0
    if (s->wrap <= 0) return Z_STREAM_END;
1254
1255
    /* Write the trailer */
1256
0
#ifdef GZIP
1257
0
    if (s->wrap == 2) {
1258
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1259
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1260
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1261
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1262
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1263
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1264
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1265
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1266
0
    }
1267
0
    else
1268
0
#endif
1269
0
    {
1270
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1271
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1272
0
    }
1273
0
    flush_pending(strm);
1274
    /* If avail_out is zero, the application will call deflate again
1275
     * to flush the rest.
1276
     */
1277
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1278
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1279
0
}
1280
1281
/* ========================================================================= */
1282
0
int ZEXPORT deflateEnd(z_streamp strm) {
1283
0
    int status;
1284
1285
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1286
1287
0
    status = strm->state->status;
1288
1289
    /* Deallocate in reverse order of allocations: */
1290
0
    TRY_FREE(strm, strm->state->pending_buf);
1291
0
    TRY_FREE(strm, strm->state->head);
1292
0
    TRY_FREE(strm, strm->state->prev);
1293
0
    TRY_FREE(strm, strm->state->window);
1294
1295
0
    ZFREE(strm, strm->state);
1296
0
    strm->state = Z_NULL;
1297
1298
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1299
0
}
1300
1301
/* =========================================================================
1302
 * Copy the source state to the destination state.
1303
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1304
 * doesn't have enough memory anyway to duplicate compression states).
1305
 */
1306
0
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1307
#ifdef MAXSEG_64K
1308
    (void)dest;
1309
    (void)source;
1310
    return Z_STREAM_ERROR;
1311
#else
1312
0
    deflate_state *ds;
1313
0
    deflate_state *ss;
1314
1315
1316
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1317
0
        return Z_STREAM_ERROR;
1318
0
    }
1319
1320
0
    ss = source->state;
1321
1322
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1323
1324
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1325
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1326
0
    zmemzero(ds, sizeof(deflate_state));
1327
0
    dest->state = (struct internal_state FAR *) ds;
1328
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1329
0
    ds->strm = dest;
1330
1331
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1332
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1333
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1334
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1335
1336
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1337
0
        ds->pending_buf == Z_NULL) {
1338
0
        deflateEnd (dest);
1339
0
        return Z_MEM_ERROR;
1340
0
    }
1341
    /* following zmemcpy's do not work for 16-bit MSDOS */
1342
0
    zmemcpy(ds->window, ss->window, ss->high_water);
1343
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev,
1344
0
            (ss->slid || ss->strstart - ss->insert > ds->w_size ? ds->w_size :
1345
0
                ss->strstart - ss->insert) * sizeof(Pos));
1346
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1347
1348
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1349
0
    zmemcpy(ds->pending_out, ss->pending_out, ss->pending);
1350
#ifdef LIT_MEM
1351
    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1352
    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1353
    zmemcpy(ds->d_buf, ss->d_buf, ss->sym_next * sizeof(ush));
1354
    zmemcpy(ds->l_buf, ss->l_buf, ss->sym_next);
1355
#else
1356
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1357
0
    zmemcpy(ds->sym_buf, ss->sym_buf, ss->sym_next);
1358
0
#endif
1359
1360
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1361
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1362
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1363
1364
0
    return Z_OK;
1365
0
#endif /* MAXSEG_64K */
1366
0
}
1367
1368
#ifndef FASTEST
1369
/* ===========================================================================
1370
 * Set match_start to the longest match starting at the given string and
1371
 * return its length. Matches shorter or equal to prev_length are discarded,
1372
 * in which case the result is equal to prev_length and match_start is
1373
 * garbage.
1374
 * IN assertions: cur_match is the head of the hash chain for the current
1375
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1376
 * OUT assertion: the match length is not greater than s->lookahead.
1377
 */
1378
0
local uInt longest_match(deflate_state *s, IPos cur_match) {
1379
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1380
0
    register Bytef *scan = s->window + s->strstart; /* current string */
1381
0
    register Bytef *match;                      /* matched string */
1382
0
    register int len;                           /* length of current match */
1383
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1384
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1385
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1386
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1387
    /* Stop when cur_match becomes <= limit. To simplify the code,
1388
     * we prevent matches with the string of window index 0.
1389
     */
1390
0
    Posf *prev = s->prev;
1391
0
    uInt wmask = s->w_mask;
1392
1393
#ifdef UNALIGNED_OK
1394
    /* Compare two bytes at a time. Note: this is not always beneficial.
1395
     * Try with and without -DUNALIGNED_OK to check.
1396
     */
1397
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1398
    register ush scan_start = *(ushf*)scan;
1399
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1400
#else
1401
0
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1402
0
    register Byte scan_end1  = scan[best_len - 1];
1403
0
    register Byte scan_end   = scan[best_len];
1404
0
#endif
1405
1406
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1407
     * It is easy to get rid of this optimization if necessary.
1408
     */
1409
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1410
1411
    /* Do not waste too much time if we already have a good match: */
1412
0
    if (s->prev_length >= s->good_match) {
1413
0
        chain_length >>= 2;
1414
0
    }
1415
    /* Do not look for matches beyond the end of the input. This is necessary
1416
     * to make deflate deterministic.
1417
     */
1418
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1419
1420
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1421
0
           "need lookahead");
1422
1423
0
    do {
1424
0
        Assert(cur_match < s->strstart, "no future");
1425
0
        match = s->window + cur_match;
1426
1427
        /* Skip to next match if the match length cannot increase
1428
         * or if the match length is less than 2.  Note that the checks below
1429
         * for insufficient lookahead only occur occasionally for performance
1430
         * reasons.  Therefore uninitialized memory will be accessed, and
1431
         * conditional jumps will be made that depend on those values.
1432
         * However the length of the match is limited to the lookahead, so
1433
         * the output of deflate is not affected by the uninitialized values.
1434
         */
1435
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1436
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1437
         * UNALIGNED_OK if your compiler uses a different size.
1438
         */
1439
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1440
            *(ushf*)match != scan_start) continue;
1441
1442
        /* It is not necessary to compare scan[2] and match[2] since they are
1443
         * always equal when the other bytes match, given that the hash keys
1444
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1445
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1446
         * lookahead only every 4th comparison; the 128th check will be made
1447
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1448
         * necessary to put more guard bytes at the end of the window, or
1449
         * to check more often for insufficient lookahead.
1450
         */
1451
        Assert(scan[2] == match[2], "scan[2]?");
1452
        scan++, match++;
1453
        do {
1454
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1455
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1456
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1457
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1458
                 scan < strend);
1459
        /* The funny "do {}" generates better code on most compilers */
1460
1461
        /* Here, scan <= window + strstart + 257 */
1462
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1463
               "wild scan");
1464
        if (*scan == *match) scan++;
1465
1466
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1467
        scan = strend - (MAX_MATCH-1);
1468
1469
#else /* UNALIGNED_OK */
1470
1471
0
        if (match[best_len]     != scan_end  ||
1472
0
            match[best_len - 1] != scan_end1 ||
1473
0
            *match              != *scan     ||
1474
0
            *++match            != scan[1])      continue;
1475
1476
        /* The check at best_len - 1 can be removed because it will be made
1477
         * again later. (This heuristic is not always a win.)
1478
         * It is not necessary to compare scan[2] and match[2] since they
1479
         * are always equal when the other bytes match, given that
1480
         * the hash keys are equal and that HASH_BITS >= 8.
1481
         */
1482
0
        scan += 2, match++;
1483
0
        Assert(*scan == *match, "match[2]?");
1484
1485
        /* We check for insufficient lookahead only every 8th comparison;
1486
         * the 256th check will be made at strstart + 258.
1487
         */
1488
0
        do {
1489
0
        } while (*++scan == *++match && *++scan == *++match &&
1490
0
                 *++scan == *++match && *++scan == *++match &&
1491
0
                 *++scan == *++match && *++scan == *++match &&
1492
0
                 *++scan == *++match && *++scan == *++match &&
1493
0
                 scan < strend);
1494
1495
0
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1496
0
               "wild scan");
1497
1498
0
        len = MAX_MATCH - (int)(strend - scan);
1499
0
        scan = strend - MAX_MATCH;
1500
1501
0
#endif /* UNALIGNED_OK */
1502
1503
0
        if (len > best_len) {
1504
0
            s->match_start = cur_match;
1505
0
            best_len = len;
1506
0
            if (len >= nice_match) break;
1507
#ifdef UNALIGNED_OK
1508
            scan_end = *(ushf*)(scan + best_len - 1);
1509
#else
1510
0
            scan_end1  = scan[best_len - 1];
1511
0
            scan_end   = scan[best_len];
1512
0
#endif
1513
0
        }
1514
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1515
0
             && --chain_length != 0);
1516
1517
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1518
0
    return s->lookahead;
1519
0
}
1520
1521
#else /* FASTEST */
1522
1523
/* ---------------------------------------------------------------------------
1524
 * Optimized version for FASTEST only
1525
 */
1526
local uInt longest_match(deflate_state *s, IPos cur_match) {
1527
    register Bytef *scan = s->window + s->strstart; /* current string */
1528
    register Bytef *match;                       /* matched string */
1529
    register int len;                           /* length of current match */
1530
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1531
1532
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1533
     * It is easy to get rid of this optimization if necessary.
1534
     */
1535
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1536
1537
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1538
           "need lookahead");
1539
1540
    Assert(cur_match < s->strstart, "no future");
1541
1542
    match = s->window + cur_match;
1543
1544
    /* Return failure if the match length is less than 2:
1545
     */
1546
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1547
1548
    /* The check at best_len - 1 can be removed because it will be made
1549
     * again later. (This heuristic is not always a win.)
1550
     * It is not necessary to compare scan[2] and match[2] since they
1551
     * are always equal when the other bytes match, given that
1552
     * the hash keys are equal and that HASH_BITS >= 8.
1553
     */
1554
    scan += 2, match += 2;
1555
    Assert(*scan == *match, "match[2]?");
1556
1557
    /* We check for insufficient lookahead only every 8th comparison;
1558
     * the 256th check will be made at strstart + 258.
1559
     */
1560
    do {
1561
    } while (*++scan == *++match && *++scan == *++match &&
1562
             *++scan == *++match && *++scan == *++match &&
1563
             *++scan == *++match && *++scan == *++match &&
1564
             *++scan == *++match && *++scan == *++match &&
1565
             scan < strend);
1566
1567
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1568
1569
    len = MAX_MATCH - (int)(strend - scan);
1570
1571
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1572
1573
    s->match_start = cur_match;
1574
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1575
}
1576
1577
#endif /* FASTEST */
1578
1579
#ifdef ZLIB_DEBUG
1580
1581
#define EQUAL 0
1582
/* result of memcmp for equal strings */
1583
1584
/* ===========================================================================
1585
 * Check that the match at match_start is indeed a match.
1586
 */
1587
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1588
    /* check that the match is indeed a match */
1589
    Bytef *back = s->window + (int)match, *here = s->window + start;
1590
    IPos len = length;
1591
    if (match == (IPos)-1) {
1592
        /* match starts one byte before the current window -- just compare the
1593
           subsequent length-1 bytes */
1594
        back++;
1595
        here++;
1596
        len--;
1597
    }
1598
    if (zmemcmp(back, here, len) != EQUAL) {
1599
        fprintf(stderr, " start %u, match %d, length %d\n",
1600
                start, (int)match, length);
1601
        do {
1602
            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1603
        } while (--len != 0);
1604
        z_error("invalid match");
1605
    }
1606
    if (z_verbose > 1) {
1607
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1608
        do { putc(s->window[start++], stderr); } while (--length != 0);
1609
    }
1610
}
1611
#else
1612
#  define check_match(s, start, match, length)
1613
#endif /* ZLIB_DEBUG */
1614
1615
/* ===========================================================================
1616
 * Flush the current block, with given end-of-file flag.
1617
 * IN assertion: strstart is set to the end of the current match.
1618
 */
1619
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1620
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1621
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1622
0
                   (charf *)Z_NULL), \
1623
0
                (ulg)((long)s->strstart - s->block_start), \
1624
0
                (last)); \
1625
0
   s->block_start = s->strstart; \
1626
0
   flush_pending(s->strm); \
1627
0
   Tracev((stderr,"[FLUSH]")); \
1628
0
}
1629
1630
/* Same but force premature exit if necessary. */
1631
0
#define FLUSH_BLOCK(s, last) { \
1632
0
   FLUSH_BLOCK_ONLY(s, last); \
1633
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1634
0
}
1635
1636
/* Maximum stored block length in deflate format (not including header). */
1637
0
#define MAX_STORED 65535
1638
1639
/* Minimum of a and b. */
1640
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1641
1642
/* ===========================================================================
1643
 * Copy without compression as much as possible from the input stream, return
1644
 * the current block state.
1645
 *
1646
 * In case deflateParams() is used to later switch to a non-zero compression
1647
 * level, s->matches (otherwise unused when storing) keeps track of the number
1648
 * of hash table slides to perform. If s->matches is 1, then one hash table
1649
 * slide will be done when switching. If s->matches is 2, the maximum value
1650
 * allowed here, then the hash table will be cleared, since two or more slides
1651
 * is the same as a clear.
1652
 *
1653
 * deflate_stored() is written to minimize the number of times an input byte is
1654
 * copied. It is most efficient with large input and output buffers, which
1655
 * maximizes the opportunities to have a single copy from next_in to next_out.
1656
 */
1657
0
local block_state deflate_stored(deflate_state *s, int flush) {
1658
    /* Smallest worthy block size when not flushing or finishing. By default
1659
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1660
     * large input and output buffers, the stored block size will be larger.
1661
     */
1662
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1663
1664
    /* Copy as many min_block or larger stored blocks directly to next_out as
1665
     * possible. If flushing, copy the remaining available input to next_out as
1666
     * stored blocks, if there is enough space.
1667
     */
1668
0
    int last = 0;
1669
0
    unsigned len, left, have;
1670
0
    unsigned used = s->strm->avail_in;
1671
0
    do {
1672
        /* Set len to the maximum size block that we can copy directly with the
1673
         * available input data and output space. Set left to how much of that
1674
         * would be copied from what's left in the window.
1675
         */
1676
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1677
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1678
0
        if (s->strm->avail_out < have)          /* need room for header */
1679
0
            break;
1680
            /* maximum stored block length that will fit in avail_out: */
1681
0
        have = s->strm->avail_out - have;
1682
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1683
0
        if (len > (ulg)left + s->strm->avail_in)
1684
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1685
0
        if (len > have)
1686
0
            len = have;                         /* limit len to the output */
1687
1688
        /* If the stored block would be less than min_block in length, or if
1689
         * unable to copy all of the available input when flushing, then try
1690
         * copying to the window and the pending buffer instead. Also don't
1691
         * write an empty block when flushing -- deflate() does that.
1692
         */
1693
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1694
0
                                flush == Z_NO_FLUSH ||
1695
0
                                len != left + s->strm->avail_in))
1696
0
            break;
1697
1698
        /* Make a dummy stored block in pending to get the header bytes,
1699
         * including any pending bits. This also updates the debugging counts.
1700
         */
1701
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1702
0
        _tr_stored_block(s, (char *)0, 0L, last);
1703
1704
        /* Replace the lengths in the dummy stored block with len. */
1705
0
        s->pending_buf[s->pending - 4] = (Bytef)len;
1706
0
        s->pending_buf[s->pending - 3] = (Bytef)(len >> 8);
1707
0
        s->pending_buf[s->pending - 2] = (Bytef)~len;
1708
0
        s->pending_buf[s->pending - 1] = (Bytef)(~len >> 8);
1709
1710
        /* Write the stored block header bytes. */
1711
0
        flush_pending(s->strm);
1712
1713
#ifdef ZLIB_DEBUG
1714
        /* Update debugging counts for the data about to be copied. */
1715
        s->compressed_len += len << 3;
1716
        s->bits_sent += len << 3;
1717
#endif
1718
1719
        /* Copy uncompressed bytes from the window to next_out. */
1720
0
        if (left) {
1721
0
            if (left > len)
1722
0
                left = len;
1723
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1724
0
            s->strm->next_out += left;
1725
0
            s->strm->avail_out -= left;
1726
0
            s->strm->total_out += left;
1727
0
            s->block_start += left;
1728
0
            len -= left;
1729
0
        }
1730
1731
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1732
         * the check value.
1733
         */
1734
0
        if (len) {
1735
0
            read_buf(s->strm, s->strm->next_out, len);
1736
0
            s->strm->next_out += len;
1737
0
            s->strm->avail_out -= len;
1738
0
            s->strm->total_out += len;
1739
0
        }
1740
0
    } while (last == 0);
1741
1742
    /* Update the sliding window with the last s->w_size bytes of the copied
1743
     * data, or append all of the copied data to the existing window if less
1744
     * than s->w_size bytes were copied. Also update the number of bytes to
1745
     * insert in the hash tables, in the event that deflateParams() switches to
1746
     * a non-zero compression level.
1747
     */
1748
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1749
0
    if (used) {
1750
        /* If any input was used, then no unused input remains in the window,
1751
         * therefore s->block_start == s->strstart.
1752
         */
1753
0
        if (used >= s->w_size) {    /* supplant the previous history */
1754
0
            s->matches = 2;         /* clear hash */
1755
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1756
0
            s->strstart = s->w_size;
1757
0
            s->insert = s->strstart;
1758
0
        }
1759
0
        else {
1760
0
            if (s->window_size - s->strstart <= used) {
1761
                /* Slide the window down. */
1762
0
                s->strstart -= s->w_size;
1763
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1764
0
                if (s->matches < 2)
1765
0
                    s->matches++;   /* add a pending slide_hash() */
1766
0
                if (s->insert > s->strstart)
1767
0
                    s->insert = s->strstart;
1768
0
            }
1769
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1770
0
            s->strstart += used;
1771
0
            s->insert += MIN(used, s->w_size - s->insert);
1772
0
        }
1773
0
        s->block_start = s->strstart;
1774
0
    }
1775
0
    if (s->high_water < s->strstart)
1776
0
        s->high_water = s->strstart;
1777
1778
    /* If the last block was written to next_out, then done. */
1779
0
    if (last) {
1780
0
        s->bi_used = 8;
1781
0
        return finish_done;
1782
0
    }
1783
1784
    /* If flushing and all input has been consumed, then done. */
1785
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1786
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1787
0
        return block_done;
1788
1789
    /* Fill the window with any remaining input. */
1790
0
    have = s->window_size - s->strstart;
1791
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1792
        /* Slide the window down. */
1793
0
        s->block_start -= s->w_size;
1794
0
        s->strstart -= s->w_size;
1795
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1796
0
        if (s->matches < 2)
1797
0
            s->matches++;           /* add a pending slide_hash() */
1798
0
        have += s->w_size;          /* more space now */
1799
0
        if (s->insert > s->strstart)
1800
0
            s->insert = s->strstart;
1801
0
    }
1802
0
    if (have > s->strm->avail_in)
1803
0
        have = s->strm->avail_in;
1804
0
    if (have) {
1805
0
        read_buf(s->strm, s->window + s->strstart, have);
1806
0
        s->strstart += have;
1807
0
        s->insert += MIN(have, s->w_size - s->insert);
1808
0
    }
1809
0
    if (s->high_water < s->strstart)
1810
0
        s->high_water = s->strstart;
1811
1812
    /* There was not enough avail_out to write a complete worthy or flushed
1813
     * stored block to next_out. Write a stored block to pending instead, if we
1814
     * have enough input for a worthy block, or if flushing and there is enough
1815
     * room for the remaining input as a stored block in the pending buffer.
1816
     */
1817
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1818
        /* maximum stored block length that will fit in pending: */
1819
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1820
0
    min_block = MIN(have, s->w_size);
1821
0
    left = s->strstart - s->block_start;
1822
0
    if (left >= min_block ||
1823
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1824
0
         s->strm->avail_in == 0 && left <= have)) {
1825
0
        len = MIN(left, have);
1826
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1827
0
               len == left ? 1 : 0;
1828
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1829
0
        s->block_start += len;
1830
0
        flush_pending(s->strm);
1831
0
    }
1832
1833
    /* We've done all we can with the available input and output. */
1834
0
    if (last)
1835
0
        s->bi_used = 8;
1836
0
    return last ? finish_started : need_more;
1837
0
}
1838
1839
/* ===========================================================================
1840
 * Compress as much as possible from the input stream, return the current
1841
 * block state.
1842
 * This function does not perform lazy evaluation of matches and inserts
1843
 * new strings in the dictionary only for unmatched strings or for short
1844
 * matches. It is used only for the fast compression options.
1845
 */
1846
0
local block_state deflate_fast(deflate_state *s, int flush) {
1847
0
    IPos hash_head;       /* head of the hash chain */
1848
0
    int bflush;           /* set if current block must be flushed */
1849
1850
0
    for (;;) {
1851
        /* Make sure that we always have enough lookahead, except
1852
         * at the end of the input file. We need MAX_MATCH bytes
1853
         * for the next match, plus MIN_MATCH bytes to insert the
1854
         * string following the next match.
1855
         */
1856
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1857
0
            fill_window(s);
1858
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1859
0
                return need_more;
1860
0
            }
1861
0
            if (s->lookahead == 0) break; /* flush the current block */
1862
0
        }
1863
1864
        /* Insert the string window[strstart .. strstart + 2] in the
1865
         * dictionary, and set hash_head to the head of the hash chain:
1866
         */
1867
0
        hash_head = NIL;
1868
0
        if (s->lookahead >= MIN_MATCH) {
1869
0
            INSERT_STRING(s, s->strstart, hash_head);
1870
0
        }
1871
1872
        /* Find the longest match, discarding those <= prev_length.
1873
         * At this point we have always match_length < MIN_MATCH
1874
         */
1875
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1876
            /* To simplify the code, we prevent matches with the string
1877
             * of window index 0 (in particular we have to avoid a match
1878
             * of the string with itself at the start of the input file).
1879
             */
1880
0
            s->match_length = longest_match (s, hash_head);
1881
            /* longest_match() sets match_start */
1882
0
        }
1883
0
        if (s->match_length >= MIN_MATCH) {
1884
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1885
1886
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1887
0
                           s->match_length - MIN_MATCH, bflush);
1888
1889
0
            s->lookahead -= s->match_length;
1890
1891
            /* Insert new strings in the hash table only if the match length
1892
             * is not too large. This saves time but degrades compression.
1893
             */
1894
0
#ifndef FASTEST
1895
0
            if (s->match_length <= s->max_insert_length &&
1896
0
                s->lookahead >= MIN_MATCH) {
1897
0
                s->match_length--; /* string at strstart already in table */
1898
0
                do {
1899
0
                    s->strstart++;
1900
0
                    INSERT_STRING(s, s->strstart, hash_head);
1901
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1902
                     * always MIN_MATCH bytes ahead.
1903
                     */
1904
0
                } while (--s->match_length != 0);
1905
0
                s->strstart++;
1906
0
            } else
1907
0
#endif
1908
0
            {
1909
0
                s->strstart += s->match_length;
1910
0
                s->match_length = 0;
1911
0
                s->ins_h = s->window[s->strstart];
1912
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1913
#if MIN_MATCH != 3
1914
                Call UPDATE_HASH() MIN_MATCH-3 more times
1915
#endif
1916
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1917
                 * matter since it will be recomputed at next deflate call.
1918
                 */
1919
0
            }
1920
0
        } else {
1921
            /* No match, output a literal byte */
1922
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1923
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1924
0
            s->lookahead--;
1925
0
            s->strstart++;
1926
0
        }
1927
0
        if (bflush) FLUSH_BLOCK(s, 0);
1928
0
    }
1929
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1930
0
    if (flush == Z_FINISH) {
1931
0
        FLUSH_BLOCK(s, 1);
1932
0
        return finish_done;
1933
0
    }
1934
0
    if (s->sym_next)
1935
0
        FLUSH_BLOCK(s, 0);
1936
0
    return block_done;
1937
0
}
1938
1939
#ifndef FASTEST
1940
/* ===========================================================================
1941
 * Same as above, but achieves better compression. We use a lazy
1942
 * evaluation for matches: a match is finally adopted only if there is
1943
 * no better match at the next window position.
1944
 */
1945
0
local block_state deflate_slow(deflate_state *s, int flush) {
1946
0
    IPos hash_head;          /* head of hash chain */
1947
0
    int bflush;              /* set if current block must be flushed */
1948
1949
    /* Process the input block. */
1950
0
    for (;;) {
1951
        /* Make sure that we always have enough lookahead, except
1952
         * at the end of the input file. We need MAX_MATCH bytes
1953
         * for the next match, plus MIN_MATCH bytes to insert the
1954
         * string following the next match.
1955
         */
1956
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1957
0
            fill_window(s);
1958
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1959
0
                return need_more;
1960
0
            }
1961
0
            if (s->lookahead == 0) break; /* flush the current block */
1962
0
        }
1963
1964
        /* Insert the string window[strstart .. strstart + 2] in the
1965
         * dictionary, and set hash_head to the head of the hash chain:
1966
         */
1967
0
        hash_head = NIL;
1968
0
        if (s->lookahead >= MIN_MATCH) {
1969
0
            INSERT_STRING(s, s->strstart, hash_head);
1970
0
        }
1971
1972
        /* Find the longest match, discarding those <= prev_length.
1973
         */
1974
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1975
0
        s->match_length = MIN_MATCH-1;
1976
1977
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1978
0
            s->strstart - hash_head <= MAX_DIST(s)) {
1979
            /* To simplify the code, we prevent matches with the string
1980
             * of window index 0 (in particular we have to avoid a match
1981
             * of the string with itself at the start of the input file).
1982
             */
1983
0
            s->match_length = longest_match (s, hash_head);
1984
            /* longest_match() sets match_start */
1985
1986
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1987
0
#if TOO_FAR <= 32767
1988
0
                || (s->match_length == MIN_MATCH &&
1989
0
                    s->strstart - s->match_start > TOO_FAR)
1990
0
#endif
1991
0
                )) {
1992
1993
                /* If prev_match is also MIN_MATCH, match_start is garbage
1994
                 * but we will ignore the current match anyway.
1995
                 */
1996
0
                s->match_length = MIN_MATCH-1;
1997
0
            }
1998
0
        }
1999
        /* If there was a match at the previous step and the current
2000
         * match is not better, output the previous match:
2001
         */
2002
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2003
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2004
            /* Do not insert strings in hash table beyond this. */
2005
2006
0
            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2007
2008
0
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2009
0
                           s->prev_length - MIN_MATCH, bflush);
2010
2011
            /* Insert in hash table all strings up to the end of the match.
2012
             * strstart - 1 and strstart are already inserted. If there is not
2013
             * enough lookahead, the last two strings are not inserted in
2014
             * the hash table.
2015
             */
2016
0
            s->lookahead -= s->prev_length - 1;
2017
0
            s->prev_length -= 2;
2018
0
            do {
2019
0
                if (++s->strstart <= max_insert) {
2020
0
                    INSERT_STRING(s, s->strstart, hash_head);
2021
0
                }
2022
0
            } while (--s->prev_length != 0);
2023
0
            s->match_available = 0;
2024
0
            s->match_length = MIN_MATCH-1;
2025
0
            s->strstart++;
2026
2027
0
            if (bflush) FLUSH_BLOCK(s, 0);
2028
2029
0
        } else if (s->match_available) {
2030
            /* If there was no match at the previous position, output a
2031
             * single literal. If there was a match but the current match
2032
             * is longer, truncate the previous match to a single literal.
2033
             */
2034
0
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2035
0
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2036
0
            if (bflush) {
2037
0
                FLUSH_BLOCK_ONLY(s, 0);
2038
0
            }
2039
0
            s->strstart++;
2040
0
            s->lookahead--;
2041
0
            if (s->strm->avail_out == 0) return need_more;
2042
0
        } else {
2043
            /* There is no previous match to compare with, wait for
2044
             * the next step to decide.
2045
             */
2046
0
            s->match_available = 1;
2047
0
            s->strstart++;
2048
0
            s->lookahead--;
2049
0
        }
2050
0
    }
2051
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
2052
0
    if (s->match_available) {
2053
0
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2054
0
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2055
0
        s->match_available = 0;
2056
0
    }
2057
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2058
0
    if (flush == Z_FINISH) {
2059
0
        FLUSH_BLOCK(s, 1);
2060
0
        return finish_done;
2061
0
    }
2062
0
    if (s->sym_next)
2063
0
        FLUSH_BLOCK(s, 0);
2064
0
    return block_done;
2065
0
}
2066
#endif /* FASTEST */
2067
2068
/* ===========================================================================
2069
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2070
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2071
 * deflate switches away from Z_RLE.)
2072
 */
2073
0
local block_state deflate_rle(deflate_state *s, int flush) {
2074
0
    int bflush;             /* set if current block must be flushed */
2075
0
    uInt prev;              /* byte at distance one to match */
2076
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2077
2078
0
    for (;;) {
2079
        /* Make sure that we always have enough lookahead, except
2080
         * at the end of the input file. We need MAX_MATCH bytes
2081
         * for the longest run, plus one for the unrolled loop.
2082
         */
2083
0
        if (s->lookahead <= MAX_MATCH) {
2084
0
            fill_window(s);
2085
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2086
0
                return need_more;
2087
0
            }
2088
0
            if (s->lookahead == 0) break; /* flush the current block */
2089
0
        }
2090
2091
        /* See how many times the previous byte repeats */
2092
0
        s->match_length = 0;
2093
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2094
0
            scan = s->window + s->strstart - 1;
2095
0
            prev = *scan;
2096
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2097
0
                strend = s->window + s->strstart + MAX_MATCH;
2098
0
                do {
2099
0
                } while (prev == *++scan && prev == *++scan &&
2100
0
                         prev == *++scan && prev == *++scan &&
2101
0
                         prev == *++scan && prev == *++scan &&
2102
0
                         prev == *++scan && prev == *++scan &&
2103
0
                         scan < strend);
2104
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2105
0
                if (s->match_length > s->lookahead)
2106
0
                    s->match_length = s->lookahead;
2107
0
            }
2108
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2109
0
                   "wild scan");
2110
0
        }
2111
2112
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2113
0
        if (s->match_length >= MIN_MATCH) {
2114
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2115
2116
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2117
2118
0
            s->lookahead -= s->match_length;
2119
0
            s->strstart += s->match_length;
2120
0
            s->match_length = 0;
2121
0
        } else {
2122
            /* No match, output a literal byte */
2123
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2124
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2125
0
            s->lookahead--;
2126
0
            s->strstart++;
2127
0
        }
2128
0
        if (bflush) FLUSH_BLOCK(s, 0);
2129
0
    }
2130
0
    s->insert = 0;
2131
0
    if (flush == Z_FINISH) {
2132
0
        FLUSH_BLOCK(s, 1);
2133
0
        return finish_done;
2134
0
    }
2135
0
    if (s->sym_next)
2136
0
        FLUSH_BLOCK(s, 0);
2137
0
    return block_done;
2138
0
}
2139
2140
/* ===========================================================================
2141
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2142
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2143
 */
2144
0
local block_state deflate_huff(deflate_state *s, int flush) {
2145
0
    int bflush;             /* set if current block must be flushed */
2146
2147
0
    for (;;) {
2148
        /* Make sure that we have a literal to write. */
2149
0
        if (s->lookahead == 0) {
2150
0
            fill_window(s);
2151
0
            if (s->lookahead == 0) {
2152
0
                if (flush == Z_NO_FLUSH)
2153
0
                    return need_more;
2154
0
                break;      /* flush the current block */
2155
0
            }
2156
0
        }
2157
2158
        /* Output a literal byte */
2159
0
        s->match_length = 0;
2160
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2161
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2162
0
        s->lookahead--;
2163
0
        s->strstart++;
2164
0
        if (bflush) FLUSH_BLOCK(s, 0);
2165
0
    }
2166
0
    s->insert = 0;
2167
0
    if (flush == Z_FINISH) {
2168
0
        FLUSH_BLOCK(s, 1);
2169
0
        return finish_done;
2170
0
    }
2171
0
    if (s->sym_next)
2172
0
        FLUSH_BLOCK(s, 0);
2173
0
    return block_done;
2174
0
}