Coverage Report

Created: 2024-09-08 06:06

/src/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
9.48k
{
81
9.48k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
9.48k
  int ci, blkn, dctbl, actbl;
83
9.48k
  d_derived_tbl **pdtbl;
84
9.48k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
9.48k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
9.48k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
150
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
33.0k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
23.5k
    compptr = cinfo->cur_comp_info[ci];
96
23.5k
    dctbl = compptr->dc_tbl_no;
97
23.5k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
23.5k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
23.5k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
23.5k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
23.5k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
23.5k
    entropy->saved.last_dc_val[ci] = 0;
106
23.5k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
39.6k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
30.1k
    ci = cinfo->MCU_membership[blkn];
111
30.1k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
30.1k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
30.1k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
30.1k
    if (compptr->component_needed) {
117
30.1k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
30.1k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
30.1k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
30.1k
  }
124
125
  /* Initialize bitread state variables */
126
9.48k
  entropy->bitstate.bits_left = 0;
127
9.48k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
9.48k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
9.48k
  entropy->restarts_to_go = cinfo->restart_interval;
132
9.48k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
73.7k
{
146
73.7k
  JHUFF_TBL *htbl;
147
73.7k
  d_derived_tbl *dtbl;
148
73.7k
  int p, i, l, si, numsymbols;
149
73.7k
  int lookbits, ctr;
150
73.7k
  char huffsize[257];
151
73.7k
  unsigned int huffcode[257];
152
73.7k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
73.7k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
63
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
73.7k
  htbl =
162
73.7k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
73.7k
  if (htbl == NULL)
164
47
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
73.7k
  if (*pdtbl == NULL)
168
32.5k
    *pdtbl = (d_derived_tbl *)
169
32.5k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
32.5k
                                  sizeof(d_derived_tbl));
171
73.7k
  dtbl = *pdtbl;
172
73.7k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
73.7k
  p = 0;
177
1.25M
  for (l = 1; l <= 16; l++) {
178
1.17M
    i = (int)htbl->bits[l];
179
1.17M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
5.48M
    while (i--)
182
4.30M
      huffsize[p++] = (char)l;
183
1.17M
  }
184
73.7k
  huffsize[p] = 0;
185
73.7k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
73.7k
  code = 0;
191
73.7k
  si = huffsize[0];
192
73.7k
  p = 0;
193
825k
  while (huffsize[p]) {
194
5.05M
    while (((int)huffsize[p]) == si) {
195
4.30M
      huffcode[p++] = code;
196
4.30M
      code++;
197
4.30M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
752k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
80
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
752k
    code <<= 1;
204
752k
    si++;
205
752k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
73.7k
  p = 0;
210
1.25M
  for (l = 1; l <= 16; l++) {
211
1.17M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
650k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
650k
      p += htbl->bits[l];
217
650k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
650k
    } else {
219
525k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
525k
    }
221
1.17M
  }
222
73.7k
  dtbl->valoffset[17] = 0;
223
73.7k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
18.8M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
18.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
73.7k
  p = 0;
236
661k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
1.48M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
895k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
18.4M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
17.5M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
17.5M
        lookbits++;
244
17.5M
      }
245
895k
    }
246
588k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
73.7k
  if (isDC) {
255
465k
    for (i = 0; i < numsymbols; i++) {
256
421k
      int sym = htbl->huffval[i];
257
421k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
145
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
421k
    }
260
44.3k
  }
261
73.7k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
27.8M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
3.50M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
3.50M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
3.50M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
3.50M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
3.50M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
27.8M
    while (bits_left < MIN_GET_BITS) {
303
24.4M
      register int c;
304
305
      /* Attempt to read a byte */
306
24.4M
      if (bytes_in_buffer == 0) {
307
2.46k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
2.46k
        next_input_byte = cinfo->src->next_input_byte;
310
2.46k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
2.46k
      }
312
24.4M
      bytes_in_buffer--;
313
24.4M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
24.4M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
416k
        do {
323
416k
          if (bytes_in_buffer == 0) {
324
149
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
149
            next_input_byte = cinfo->src->next_input_byte;
327
149
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
149
          }
329
416k
          bytes_in_buffer--;
330
416k
          c = *next_input_byte++;
331
416k
        } while (c == 0xFF);
332
333
267k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
240k
          c = 0xFF;
336
240k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
27.1k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
27.1k
          goto no_more_bytes;
348
27.1k
        }
349
267k
      }
350
351
      /* OK, load c into get_buffer */
352
24.3M
      get_buffer = (get_buffer << 8) | c;
353
24.3M
      bits_left += 8;
354
24.3M
    } /* end while */
355
3.46M
  } else {
356
70.2k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
70.2k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
5.36k
      if (!cinfo->entropy->insufficient_data) {
368
5.36k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
5.36k
        cinfo->entropy->insufficient_data = TRUE;
370
5.36k
      }
371
      /* Fill the buffer with zero bits */
372
5.36k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
5.36k
      bits_left = MIN_GET_BITS;
374
5.36k
    }
375
70.2k
  }
376
377
  /* Unload the local registers */
378
3.50M
  state->next_input_byte = next_input_byte;
379
3.50M
  state->bytes_in_buffer = bytes_in_buffer;
380
3.50M
  state->get_buffer = get_buffer;
381
3.50M
  state->bits_left = bits_left;
382
383
3.50M
  return TRUE;
384
3.50M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
9.78M
#define GET_BYTE { \
392
9.78M
  register int c0, c1; \
393
9.78M
  c0 = *buffer++; \
394
9.78M
  c1 = *buffer; \
395
9.78M
  /* Pre-execute most common case */ \
396
9.78M
  get_buffer = (get_buffer << 8) | c0; \
397
9.78M
  bits_left += 8; \
398
9.78M
  if (c0 == 0xFF) { \
399
456k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
456k
    buffer++; \
401
456k
    if (c1 != 0) { \
402
331k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
331k
      cinfo->unread_marker = c1; \
404
331k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
331k
      buffer -= 2; \
406
331k
      get_buffer &= ~0xFF; \
407
331k
    } \
408
456k
  } \
409
9.78M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
26.0M
  if (bits_left <= 16) { \
416
1.63M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
1.63M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
810k
{
440
810k
  register int l = min_bits;
441
810k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
810k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
810k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
1.96M
  while (code > htbl->maxcode[l]) {
453
1.15M
    code <<= 1;
454
1.15M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
1.15M
    code |= GET_BITS(1);
456
1.15M
    l++;
457
1.15M
  }
458
459
  /* Unload the local registers */
460
810k
  state->get_buffer = get_buffer;
461
810k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
810k
  if (l > 16) {
466
1.21k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.21k
    return 0;                   /* fake a zero as the safest result */
468
1.21k
  }
469
470
809k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
810k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
19.7M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
19.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
4.99k
{
514
4.99k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
4.99k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
4.99k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
4.99k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
4.99k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
19.1k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
14.1k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
4.99k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
4.99k
  if (cinfo->unread_marker == 0)
539
4.86k
    entropy->pub.insufficient_data = FALSE;
540
541
4.99k
  return TRUE;
542
4.99k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
502k
{
554
502k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
502k
  BITREAD_STATE_VARS;
556
502k
  int blkn;
557
502k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
502k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
502k
  state = entropy->saved;
563
564
2.03M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.53M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.53M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.53M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.53M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.53M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.53M
    if (s) {
575
562k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
562k
      r = GET_BITS(s);
577
562k
      s = HUFF_EXTEND(r, s);
578
562k
    }
579
580
1.53M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.53M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.53M
      s += state.last_dc_val[ci];
592
1.53M
      state.last_dc_val[ci] = s;
593
1.53M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.53M
        (*block)[0] = (JCOEF)s;
596
1.53M
      }
597
1.53M
    }
598
599
1.53M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
10.2M
      for (k = 1; k < DCTSIZE2; k++) {
604
10.2M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
10.2M
        r = s >> 4;
607
10.2M
        s &= 15;
608
609
10.2M
        if (s) {
610
8.63M
          k += r;
611
8.63M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
8.63M
          r = GET_BITS(s);
613
8.63M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
8.63M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
8.63M
        } else {
620
1.56M
          if (r != 15)
621
1.48M
            break;
622
83.9k
          k += 15;
623
83.9k
        }
624
10.2M
      }
625
626
1.53M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
1.31k
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
1.31k
    }
647
1.53M
  }
648
649
  /* Completed MCU, so update state */
650
501k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
501k
  entropy->saved = state;
652
501k
  return TRUE;
653
502k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.00M
{
665
1.00M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.00M
  BITREAD_STATE_VARS;
667
1.00M
  JOCTET *buffer;
668
1.00M
  int blkn;
669
1.00M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.00M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.00M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.00M
  state = entropy->saved;
676
677
3.96M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
2.95M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
2.95M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
2.95M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
2.95M
    register int s, k, r, l;
682
683
2.95M
    HUFF_DECODE_FAST(s, l, dctbl);
684
2.95M
    if (s) {
685
845k
      FILL_BIT_BUFFER_FAST
686
845k
      r = GET_BITS(s);
687
845k
      s = HUFF_EXTEND(r, s);
688
845k
    }
689
690
2.95M
    if (entropy->dc_needed[blkn]) {
691
2.95M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.95M
      s += state.last_dc_val[ci];
696
2.95M
      state.last_dc_val[ci] = s;
697
2.95M
      if (block)
698
2.95M
        (*block)[0] = (JCOEF)s;
699
2.95M
    }
700
701
2.95M
    if (entropy->ac_needed[blkn] && block) {
702
703
12.7M
      for (k = 1; k < DCTSIZE2; k++) {
704
12.5M
        HUFF_DECODE_FAST(s, l, actbl);
705
12.5M
        r = s >> 4;
706
12.5M
        s &= 15;
707
708
12.5M
        if (s) {
709
9.74M
          k += r;
710
9.74M
          FILL_BIT_BUFFER_FAST
711
9.74M
          r = GET_BITS(s);
712
9.74M
          s = HUFF_EXTEND(r, s);
713
9.74M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
9.74M
        } else {
715
2.79M
          if (r != 15) break;
716
12.5k
          k += 15;
717
12.5k
        }
718
12.5M
      }
719
720
2.95M
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
2.95M
  }
738
739
1.00M
  if (cinfo->unread_marker != 0) {
740
28.9k
    cinfo->unread_marker = 0;
741
28.9k
    return FALSE;
742
28.9k
  }
743
744
978k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
978k
  br_state.next_input_byte = buffer;
746
978k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
978k
  entropy->saved = state;
748
978k
  return TRUE;
749
1.00M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
1.48M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
1.48M
{
772
1.48M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
1.48M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
1.48M
  if (cinfo->restart_interval) {
777
149k
    if (entropy->restarts_to_go == 0)
778
4.99k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
149k
    usefast = 0;
781
149k
  }
782
783
1.48M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
1.48M
      cinfo->unread_marker != 0)
785
345k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
1.48M
  if (!entropy->pub.insufficient_data) {
791
792
1.48M
    if (usefast) {
793
1.00M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.00M
    } else {
795
502k
use_slow:
796
502k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
502k
    }
798
799
1.48M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
1.48M
  if (cinfo->restart_interval)
803
148k
    entropy->restarts_to_go--;
804
805
1.48M
  return TRUE;
806
1.48M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
9.11k
{
816
9.11k
  huff_entropy_ptr entropy;
817
9.11k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
9.11k
  std_huff_tables((j_common_ptr)cinfo);
824
825
9.11k
  entropy = (huff_entropy_ptr)
826
9.11k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
9.11k
                                sizeof(huff_entropy_decoder));
828
9.11k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
9.11k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
9.11k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
45.5k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
36.4k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
36.4k
  }
836
9.11k
}