Coverage Report

Created: 2025-06-22 06:33

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
12.1k
{
81
12.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
12.1k
  int ci, blkn, dctbl, actbl;
83
12.1k
  d_derived_tbl **pdtbl;
84
12.1k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
12.1k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
12.1k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
261
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
34.7k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
22.5k
    compptr = cinfo->cur_comp_info[ci];
96
22.5k
    dctbl = compptr->dc_tbl_no;
97
22.5k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
22.5k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
22.5k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
22.5k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
22.5k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
22.5k
    entropy->saved.last_dc_val[ci] = 0;
106
22.5k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
43.1k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
30.9k
    ci = cinfo->MCU_membership[blkn];
111
30.9k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
30.9k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
30.9k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
30.9k
    if (compptr->component_needed) {
117
30.9k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
30.9k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
30.9k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
30.9k
  }
124
125
  /* Initialize bitread state variables */
126
12.1k
  entropy->bitstate.bits_left = 0;
127
12.1k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
12.1k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
12.1k
  entropy->restarts_to_go = cinfo->restart_interval;
132
12.1k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
116k
{
146
116k
  JHUFF_TBL *htbl;
147
116k
  d_derived_tbl *dtbl;
148
116k
  int p, i, l, si, numsymbols;
149
116k
  int lookbits, ctr;
150
116k
  char huffsize[257];
151
116k
  unsigned int huffcode[257];
152
116k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
116k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
77
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
116k
  htbl =
162
116k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
116k
  if (htbl == NULL)
164
83
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
116k
  if (*pdtbl == NULL)
168
52.6k
    *pdtbl = (d_derived_tbl *)
169
52.6k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
52.6k
                                  sizeof(d_derived_tbl));
171
116k
  dtbl = *pdtbl;
172
116k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
116k
  p = 0;
177
1.98M
  for (l = 1; l <= 16; l++) {
178
1.86M
    i = (int)htbl->bits[l];
179
1.86M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
6.42M
    while (i--)
182
4.55M
      huffsize[p++] = (char)l;
183
1.86M
  }
184
116k
  huffsize[p] = 0;
185
116k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
116k
  code = 0;
191
116k
  si = huffsize[0];
192
116k
  p = 0;
193
1.12M
  while (huffsize[p]) {
194
5.56M
    while (((int)huffsize[p]) == si) {
195
4.55M
      huffcode[p++] = code;
196
4.55M
      code++;
197
4.55M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.01M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
161
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.01M
    code <<= 1;
204
1.01M
    si++;
205
1.01M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
116k
  p = 0;
210
1.98M
  for (l = 1; l <= 16; l++) {
211
1.86M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
874k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
874k
      p += htbl->bits[l];
217
874k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
988k
    } else {
219
988k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
988k
    }
221
1.86M
  }
222
116k
  dtbl->valoffset[17] = 0;
223
116k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
29.9M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
29.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
116k
  p = 0;
236
1.04M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.24M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.31M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
28.5M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
27.2M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
27.2M
        lookbits++;
244
27.2M
      }
245
1.31M
    }
246
931k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
116k
  if (isDC) {
255
705k
    for (i = 0; i < numsymbols; i++) {
256
632k
      int sym = htbl->huffval[i];
257
632k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
349
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
632k
    }
260
72.9k
  }
261
116k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
61.4M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
7.70M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
7.70M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
7.70M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
7.70M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
7.70M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
61.4M
    while (bits_left < MIN_GET_BITS) {
303
53.8M
      register int c;
304
305
      /* Attempt to read a byte */
306
53.8M
      if (bytes_in_buffer == 0) {
307
5.79k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
5.79k
        next_input_byte = cinfo->src->next_input_byte;
310
5.79k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
5.79k
      }
312
53.8M
      bytes_in_buffer--;
313
53.8M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
53.8M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
829k
        do {
323
829k
          if (bytes_in_buffer == 0) {
324
183
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
183
            next_input_byte = cinfo->src->next_input_byte;
327
183
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
183
          }
329
829k
          bytes_in_buffer--;
330
829k
          c = *next_input_byte++;
331
829k
        } while (c == 0xFF);
332
333
480k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
424k
          c = 0xFF;
336
424k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
55.6k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
55.6k
          goto no_more_bytes;
348
55.6k
        }
349
480k
      }
350
351
      /* OK, load c into get_buffer */
352
53.8M
      get_buffer = (get_buffer << 8) | c;
353
53.8M
      bits_left += 8;
354
53.8M
    } /* end while */
355
7.61M
  } else {
356
151k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
151k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
11.8k
      if (!cinfo->entropy->insufficient_data) {
368
11.8k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
11.8k
        cinfo->entropy->insufficient_data = TRUE;
370
11.8k
      }
371
      /* Fill the buffer with zero bits */
372
11.8k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
11.8k
      bits_left = MIN_GET_BITS;
374
11.8k
    }
375
151k
  }
376
377
  /* Unload the local registers */
378
7.70M
  state->next_input_byte = next_input_byte;
379
7.70M
  state->bytes_in_buffer = bytes_in_buffer;
380
7.70M
  state->get_buffer = get_buffer;
381
7.70M
  state->bits_left = bits_left;
382
383
7.70M
  return TRUE;
384
7.70M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
14.5M
#define GET_BYTE { \
392
14.5M
  register int c0, c1; \
393
14.5M
  c0 = *buffer++; \
394
14.5M
  c1 = *buffer; \
395
14.5M
  /* Pre-execute most common case */ \
396
14.5M
  get_buffer = (get_buffer << 8) | c0; \
397
14.5M
  bits_left += 8; \
398
14.5M
  if (c0 == 0xFF) { \
399
1.10M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.10M
    buffer++; \
401
1.10M
    if (c1 != 0) { \
402
623k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
623k
      cinfo->unread_marker = c1; \
404
623k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
623k
      buffer -= 2; \
406
623k
      get_buffer &= ~0xFF; \
407
623k
    } \
408
1.10M
  } \
409
14.5M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
38.3M
  if (bits_left <= 16) { \
416
2.42M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
2.42M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
1.12M
{
440
1.12M
  register int l = min_bits;
441
1.12M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
1.12M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
1.12M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
2.37M
  while (code > htbl->maxcode[l]) {
453
1.24M
    code <<= 1;
454
1.24M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
1.24M
    code |= GET_BITS(1);
456
1.24M
    l++;
457
1.24M
  }
458
459
  /* Unload the local registers */
460
1.12M
  state->get_buffer = get_buffer;
461
1.12M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
1.12M
  if (l > 16) {
466
4.11k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
4.11k
    return 0;                   /* fake a zero as the safest result */
468
4.11k
  }
469
470
1.12M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
1.12M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
22.7M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
22.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
7.51k
{
514
7.51k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
7.51k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
7.51k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
7.51k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
7.51k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
19.5k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
12.0k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
7.51k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
7.51k
  if (cinfo->unread_marker == 0)
539
7.35k
    entropy->pub.insufficient_data = FALSE;
540
541
7.51k
  return TRUE;
542
7.51k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
907k
{
554
907k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
907k
  BITREAD_STATE_VARS;
556
907k
  int blkn;
557
907k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
907k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
907k
  state = entropy->saved;
563
564
2.58M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.68M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.68M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.68M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.68M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.68M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.68M
    if (s) {
575
655k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
655k
      r = GET_BITS(s);
577
655k
      s = HUFF_EXTEND(r, s);
578
655k
    }
579
580
1.68M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.68M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.68M
      s += state.last_dc_val[ci];
592
1.68M
      state.last_dc_val[ci] = s;
593
1.68M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.68M
        (*block)[0] = (JCOEF)s;
596
1.68M
      }
597
1.68M
    }
598
599
1.68M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
8.27M
      for (k = 1; k < DCTSIZE2; k++) {
604
8.21M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
8.21M
        r = s >> 4;
607
8.21M
        s &= 15;
608
609
8.21M
        if (s) {
610
6.46M
          k += r;
611
6.46M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
6.46M
          r = GET_BITS(s);
613
6.46M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
6.46M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
6.46M
        } else {
620
1.75M
          if (r != 15)
621
1.62M
            break;
622
132k
          k += 15;
623
132k
        }
624
8.21M
      }
625
626
1.68M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.53k
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
2.53k
    }
647
1.68M
  }
648
649
  /* Completed MCU, so update state */
650
906k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
906k
  entropy->saved = state;
652
906k
  return TRUE;
653
907k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
3.41M
{
665
3.41M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
3.41M
  BITREAD_STATE_VARS;
667
3.41M
  JOCTET *buffer;
668
3.41M
  int blkn;
669
3.41M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
3.41M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
3.41M
  buffer = (JOCTET *)br_state.next_input_byte;
675
3.41M
  state = entropy->saved;
676
677
8.01M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
4.59M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
4.59M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
4.59M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
4.59M
    register int s, k, r, l;
682
683
4.59M
    HUFF_DECODE_FAST(s, l, dctbl);
684
4.59M
    if (s) {
685
2.05M
      FILL_BIT_BUFFER_FAST
686
2.05M
      r = GET_BITS(s);
687
2.05M
      s = HUFF_EXTEND(r, s);
688
2.05M
    }
689
690
4.59M
    if (entropy->dc_needed[blkn]) {
691
4.59M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
4.59M
      s += state.last_dc_val[ci];
696
4.59M
      state.last_dc_val[ci] = s;
697
4.59M
      if (block)
698
4.59M
        (*block)[0] = (JCOEF)s;
699
4.59M
    }
700
701
4.59M
    if (entropy->ac_needed[blkn] && block) {
702
703
18.2M
      for (k = 1; k < DCTSIZE2; k++) {
704
18.1M
        HUFF_DECODE_FAST(s, l, actbl);
705
18.1M
        r = s >> 4;
706
18.1M
        s &= 15;
707
708
18.1M
        if (s) {
709
13.5M
          k += r;
710
13.5M
          FILL_BIT_BUFFER_FAST
711
13.5M
          r = GET_BITS(s);
712
13.5M
          s = HUFF_EXTEND(r, s);
713
13.5M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
13.5M
        } else {
715
4.60M
          if (r != 15) break;
716
90.8k
          k += 15;
717
90.8k
        }
718
18.1M
      }
719
720
4.59M
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
4.59M
  }
738
739
3.41M
  if (cinfo->unread_marker != 0) {
740
65.6k
    cinfo->unread_marker = 0;
741
65.6k
    return FALSE;
742
65.6k
  }
743
744
3.34M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
3.34M
  br_state.next_input_byte = buffer;
746
3.34M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
3.34M
  entropy->saved = state;
748
3.34M
  return TRUE;
749
3.41M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
4.25M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
4.25M
{
772
4.25M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
4.25M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
4.25M
  if (cinfo->restart_interval) {
777
434k
    if (entropy->restarts_to_go == 0)
778
7.51k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
434k
    usefast = 0;
781
434k
  }
782
783
4.25M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
4.25M
      cinfo->unread_marker != 0)
785
551k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
4.25M
  if (!entropy->pub.insufficient_data) {
791
792
4.25M
    if (usefast) {
793
3.41M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
3.41M
    } else {
795
907k
use_slow:
796
907k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
907k
    }
798
799
4.25M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
4.25M
  if (cinfo->restart_interval)
803
433k
    entropy->restarts_to_go--;
804
805
4.25M
  return TRUE;
806
4.25M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
11.2k
{
816
11.2k
  huff_entropy_ptr entropy;
817
11.2k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
11.2k
  std_huff_tables((j_common_ptr)cinfo);
824
825
11.2k
  entropy = (huff_entropy_ptr)
826
11.2k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
11.2k
                                sizeof(huff_entropy_decoder));
828
11.2k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
11.2k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
11.2k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
56.4k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
45.1k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
45.1k
  }
836
11.2k
}