Coverage Report

Created: 2025-08-26 07:13

/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
13.3k
{
81
13.3k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
13.3k
  int ci, blkn, dctbl, actbl;
83
13.3k
  d_derived_tbl **pdtbl;
84
13.3k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
13.3k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
13.3k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
314
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
36.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
23.6k
    compptr = cinfo->cur_comp_info[ci];
96
23.6k
    dctbl = compptr->dc_tbl_no;
97
23.6k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
23.6k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
23.6k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
23.6k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
23.6k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
23.6k
    entropy->saved.last_dc_val[ci] = 0;
106
23.6k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
45.4k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
32.0k
    ci = cinfo->MCU_membership[blkn];
111
32.0k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
32.0k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
32.0k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
32.0k
    if (compptr->component_needed) {
117
32.0k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
32.0k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
32.0k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
32.0k
  }
124
125
  /* Initialize bitread state variables */
126
13.3k
  entropy->bitstate.bits_left = 0;
127
13.3k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
13.3k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
13.3k
  entropy->restarts_to_go = cinfo->restart_interval;
132
13.3k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
140k
{
146
140k
  JHUFF_TBL *htbl;
147
140k
  d_derived_tbl *dtbl;
148
140k
  int p, i, l, si, numsymbols;
149
140k
  int lookbits, ctr;
150
140k
  char huffsize[257];
151
140k
  unsigned int huffcode[257];
152
140k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
140k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
99
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
140k
  htbl =
162
140k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
140k
  if (htbl == NULL)
164
109
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
140k
  if (*pdtbl == NULL)
168
60.1k
    *pdtbl = (d_derived_tbl *)
169
60.1k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
60.1k
                                  sizeof(d_derived_tbl));
171
140k
  dtbl = *pdtbl;
172
140k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
140k
  p = 0;
177
2.38M
  for (l = 1; l <= 16; l++) {
178
2.24M
    i = (int)htbl->bits[l];
179
2.24M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
7.30M
    while (i--)
182
5.05M
      huffsize[p++] = (char)l;
183
2.24M
  }
184
140k
  huffsize[p] = 0;
185
140k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
140k
  code = 0;
191
140k
  si = huffsize[0];
192
140k
  p = 0;
193
1.31M
  while (huffsize[p]) {
194
6.22M
    while (((int)huffsize[p]) == si) {
195
5.05M
      huffcode[p++] = code;
196
5.05M
      code++;
197
5.05M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.17M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
159
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.17M
    code <<= 1;
204
1.17M
    si++;
205
1.17M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
140k
  p = 0;
210
2.38M
  for (l = 1; l <= 16; l++) {
211
2.24M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
1.02M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
1.02M
      p += htbl->bits[l];
217
1.02M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
1.21M
    } else {
219
1.21M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
1.21M
    }
221
2.24M
  }
222
140k
  dtbl->valoffset[17] = 0;
223
140k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
35.9M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
35.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
140k
  p = 0;
236
1.26M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.70M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.58M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
34.4M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
32.8M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
32.8M
        lookbits++;
244
32.8M
      }
245
1.58M
    }
246
1.12M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
140k
  if (isDC) {
255
817k
    for (i = 0; i < numsymbols; i++) {
256
732k
      int sym = htbl->huffval[i];
257
732k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
352
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
732k
    }
260
85.3k
  }
261
140k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
88.8M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
11.1M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
11.1M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
11.1M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
11.1M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
11.1M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
88.8M
    while (bits_left < MIN_GET_BITS) {
303
77.9M
      register int c;
304
305
      /* Attempt to read a byte */
306
77.9M
      if (bytes_in_buffer == 0) {
307
7.36k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
7.36k
        next_input_byte = cinfo->src->next_input_byte;
310
7.36k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
7.36k
      }
312
77.9M
      bytes_in_buffer--;
313
77.9M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
77.9M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
967k
        do {
323
967k
          if (bytes_in_buffer == 0) {
324
187
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
187
            next_input_byte = cinfo->src->next_input_byte;
327
187
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
187
          }
329
967k
          bytes_in_buffer--;
330
967k
          c = *next_input_byte++;
331
967k
        } while (c == 0xFF);
332
333
588k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
514k
          c = 0xFF;
336
514k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
73.2k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
73.2k
          goto no_more_bytes;
348
73.2k
        }
349
588k
      }
350
351
      /* OK, load c into get_buffer */
352
77.8M
      get_buffer = (get_buffer << 8) | c;
353
77.8M
      bits_left += 8;
354
77.8M
    } /* end while */
355
11.0M
  } else {
356
181k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
181k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
12.7k
      if (!cinfo->entropy->insufficient_data) {
368
12.7k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
12.7k
        cinfo->entropy->insufficient_data = TRUE;
370
12.7k
      }
371
      /* Fill the buffer with zero bits */
372
12.7k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
12.7k
      bits_left = MIN_GET_BITS;
374
12.7k
    }
375
181k
  }
376
377
  /* Unload the local registers */
378
11.1M
  state->next_input_byte = next_input_byte;
379
11.1M
  state->bytes_in_buffer = bytes_in_buffer;
380
11.1M
  state->get_buffer = get_buffer;
381
11.1M
  state->bits_left = bits_left;
382
383
11.1M
  return TRUE;
384
11.1M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
18.1M
#define GET_BYTE { \
392
18.1M
  register int c0, c1; \
393
18.1M
  c0 = *buffer++; \
394
18.1M
  c1 = *buffer; \
395
18.1M
  /* Pre-execute most common case */ \
396
18.1M
  get_buffer = (get_buffer << 8) | c0; \
397
18.1M
  bits_left += 8; \
398
18.1M
  if (c0 == 0xFF) { \
399
1.32M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.32M
    buffer++; \
401
1.32M
    if (c1 != 0) { \
402
756k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
756k
      cinfo->unread_marker = c1; \
404
756k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
756k
      buffer -= 2; \
406
756k
      get_buffer &= ~0xFF; \
407
756k
    } \
408
1.32M
  } \
409
18.1M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
45.5M
  if (bits_left <= 16) { \
416
3.02M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
3.02M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
1.52M
{
440
1.52M
  register int l = min_bits;
441
1.52M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
1.52M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
1.52M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
3.05M
  while (code > htbl->maxcode[l]) {
453
1.53M
    code <<= 1;
454
1.53M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
1.53M
    code |= GET_BITS(1);
456
1.53M
    l++;
457
1.53M
  }
458
459
  /* Unload the local registers */
460
1.52M
  state->get_buffer = get_buffer;
461
1.52M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
1.52M
  if (l > 16) {
466
4.77k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
4.77k
    return 0;                   /* fake a zero as the safest result */
468
4.77k
  }
469
470
1.51M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
1.52M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
27.2M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
27.2M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
9.32k
{
514
9.32k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
9.32k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
9.32k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
9.32k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
9.32k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
23.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
14.5k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
9.32k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
9.32k
  if (cinfo->unread_marker == 0)
539
9.18k
    entropy->pub.insufficient_data = FALSE;
540
541
9.32k
  return TRUE;
542
9.32k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
1.05M
{
554
1.05M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
1.05M
  BITREAD_STATE_VARS;
556
1.05M
  int blkn;
557
1.05M
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
1.05M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
1.05M
  state = entropy->saved;
563
564
2.92M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.87M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.87M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.87M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.87M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.87M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.87M
    if (s) {
575
709k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
709k
      r = GET_BITS(s);
577
709k
      s = HUFF_EXTEND(r, s);
578
709k
    }
579
580
1.87M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.87M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.87M
      s += state.last_dc_val[ci];
592
1.87M
      state.last_dc_val[ci] = s;
593
1.87M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.87M
        (*block)[0] = (JCOEF)s;
596
1.87M
      }
597
1.87M
    }
598
599
1.87M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
8.89M
      for (k = 1; k < DCTSIZE2; k++) {
604
8.84M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
8.84M
        r = s >> 4;
607
8.84M
        s &= 15;
608
609
8.84M
        if (s) {
610
6.94M
          k += r;
611
6.94M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
6.94M
          r = GET_BITS(s);
613
6.94M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
6.94M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
6.94M
        } else {
620
1.89M
          if (r != 15)
621
1.82M
            break;
622
71.4k
          k += 15;
623
71.4k
        }
624
8.84M
      }
625
626
1.87M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.74k
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
2.74k
    }
647
1.87M
  }
648
649
  /* Completed MCU, so update state */
650
1.05M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
1.05M
  entropy->saved = state;
652
1.05M
  return TRUE;
653
1.05M
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
2.91M
{
665
2.91M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
2.91M
  BITREAD_STATE_VARS;
667
2.91M
  JOCTET *buffer;
668
2.91M
  int blkn;
669
2.91M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
2.91M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
2.91M
  buffer = (JOCTET *)br_state.next_input_byte;
675
2.91M
  state = entropy->saved;
676
677
6.94M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
4.03M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
4.03M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
4.03M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
4.03M
    register int s, k, r, l;
682
683
4.03M
    HUFF_DECODE_FAST(s, l, dctbl);
684
4.03M
    if (s) {
685
1.70M
      FILL_BIT_BUFFER_FAST
686
1.70M
      r = GET_BITS(s);
687
1.70M
      s = HUFF_EXTEND(r, s);
688
1.70M
    }
689
690
4.03M
    if (entropy->dc_needed[blkn]) {
691
4.03M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
4.03M
      s += state.last_dc_val[ci];
696
4.03M
      state.last_dc_val[ci] = s;
697
4.03M
      if (block)
698
4.03M
        (*block)[0] = (JCOEF)s;
699
4.03M
    }
700
701
4.03M
    if (entropy->ac_needed[blkn] && block) {
702
703
22.1M
      for (k = 1; k < DCTSIZE2; k++) {
704
21.9M
        HUFF_DECODE_FAST(s, l, actbl);
705
21.9M
        r = s >> 4;
706
21.9M
        s &= 15;
707
708
21.9M
        if (s) {
709
17.8M
          k += r;
710
17.8M
          FILL_BIT_BUFFER_FAST
711
17.8M
          r = GET_BITS(s);
712
17.8M
          s = HUFF_EXTEND(r, s);
713
17.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
17.8M
        } else {
715
4.10M
          if (r != 15) break;
716
201k
          k += 15;
717
201k
        }
718
21.9M
      }
719
720
4.03M
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
4.03M
  }
738
739
2.91M
  if (cinfo->unread_marker != 0) {
740
95.8k
    cinfo->unread_marker = 0;
741
95.8k
    return FALSE;
742
95.8k
  }
743
744
2.82M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
2.82M
  br_state.next_input_byte = buffer;
746
2.82M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
2.82M
  entropy->saved = state;
748
2.82M
  return TRUE;
749
2.91M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
3.87M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
3.87M
{
772
3.87M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
3.87M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
3.87M
  if (cinfo->restart_interval) {
777
564k
    if (entropy->restarts_to_go == 0)
778
9.32k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
564k
    usefast = 0;
781
564k
  }
782
783
3.87M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
3.87M
      cinfo->unread_marker != 0)
785
585k
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
3.87M
  if (!entropy->pub.insufficient_data) {
791
792
3.87M
    if (usefast) {
793
2.91M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
2.91M
    } else {
795
1.05M
use_slow:
796
1.05M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
1.05M
    }
798
799
3.87M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
3.87M
  if (cinfo->restart_interval)
803
563k
    entropy->restarts_to_go--;
804
805
3.87M
  return TRUE;
806
3.87M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
12.6k
{
816
12.6k
  huff_entropy_ptr entropy;
817
12.6k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
12.6k
  std_huff_tables((j_common_ptr)cinfo);
824
825
12.6k
  entropy = (huff_entropy_ptr)
826
12.6k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
12.6k
                                sizeof(huff_entropy_decoder));
828
12.6k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
12.6k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
12.6k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
63.0k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
50.4k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
50.4k
  }
836
12.6k
}