Coverage Report

Created: 2025-08-05 06:45

/src/quantlib/ql/experimental/credit/randomdefaultmodel.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2008 Roland Lichters
5
 Copyright (C) 2009 Jose Aparicio
6
7
 This file is part of QuantLib, a free-software/open-source library
8
 for financial quantitative analysts and developers - http://quantlib.org/
9
10
 QuantLib is free software: you can redistribute it and/or modify it
11
 under the terms of the QuantLib license.  You should have received a
12
 copy of the license along with this program; if not, please email
13
 <quantlib-dev@lists.sf.net>. The license is also available online at
14
 <http://quantlib.org/license.shtml>.
15
16
 This program is distributed in the hope that it will be useful, but WITHOUT
17
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18
 FOR A PARTICULAR PURPOSE.  See the license for more details.
19
*/
20
21
#include <ql/experimental/credit/randomdefaultmodel.hpp>
22
#include <ql/math/solvers1d/bisection.hpp>
23
#include <ql/math/solvers1d/brent.hpp>
24
#include <utility>
25
26
using namespace std;
27
28
namespace QuantLib {
29
30
    namespace {
31
32
        // Utility for the numerical solver
33
        class Root {
34
          public:
35
            Root(Handle<DefaultProbabilityTermStructure> dts, Real pd)
36
0
            : dts_(std::move(dts)), pd_(pd) {}
37
0
            Real operator()(Real t) const {
38
0
                QL_REQUIRE(t >= 0.0, "GaussianRandomDefaultModel: internal error, t < 0 ("
39
0
                                         << t << ") during root searching.");
40
0
                return dts_->defaultProbability(t, true) - pd_;
41
0
            }
42
          private:
43
            const Handle<DefaultProbabilityTermStructure> dts_;
44
            Real pd_;
45
        };
46
47
    }
48
49
    GaussianRandomDefaultModel::GaussianRandomDefaultModel(
50
        const ext::shared_ptr<Pool>& pool,
51
        const std::vector<DefaultProbKey>& defaultKeys,
52
        const Handle<OneFactorCopula>& copula,
53
        Real accuracy,
54
        long seed)
55
0
    : RandomDefaultModel(pool, defaultKeys), copula_(copula), accuracy_(accuracy), seed_(seed),
56
0
      rsg_(PseudoRandom::make_sequence_generator(pool->size() + 1, seed)) {
57
0
        registerWith(copula);
58
0
    }
59
60
0
    void GaussianRandomDefaultModel::reset() {
61
0
        Size dim = pool_->size() + 1;
62
0
        rsg_ = PseudoRandom::make_sequence_generator(dim, seed_);
63
0
    }
64
65
0
    void GaussianRandomDefaultModel::nextSequence(Real tmax) {
66
0
        const std::vector<Real>& values = rsg_.nextSequence().value;
67
0
        Real a = sqrt(copula_->correlation());
68
0
        for (Size j = 0; j < pool_->size(); j++) {
69
0
            const string name = pool_->names()[j];
70
0
            const Handle<DefaultProbabilityTermStructure>&
71
0
                dts = pool_->get(name).defaultProbability(defaultKeys_[j]);
72
73
0
            Real y = a * values[0] + sqrt(1-a*a) * values[j+1];
74
0
            Real p = CumulativeNormalDistribution()(y);
75
76
0
            if (dts->defaultProbability(tmax) < p)
77
0
                pool_->setTime(name, tmax + 1);
78
0
            else {
79
                // we know there is a zero of f(t) = dts->defaultProbability(t) - p in [0, tmax]
80
0
                try {
81
                    // try bracketing the root and find it with Brent
82
0
                    Brent brent;
83
0
                    brent.setLowerBound(0.0);
84
0
                    brent.setUpperBound(tmax);
85
0
                    pool_->setTime(name, brent.solve(Root(dts, p), accuracy_, tmax / 2.0, 1.0));
86
0
                } catch (...) {
87
                    // if Brent fails, use Bisection, this is guaranteed to find the root
88
0
                    pool_->setTime(
89
0
                        name, Bisection().solve(Root(dts, p), accuracy_, tmax / 2.0, 0.0, tmax));
90
0
                }
91
0
            }
92
0
        }
93
0
    }
94
95
}
96