/src/quantlib/ql/experimental/math/zigguratrng.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2010 Kakhkhor Abdijalilov |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/experimental/math/zigguratrng.hpp> |
21 | | #include <ql/math/distributions/normaldistribution.hpp> |
22 | | #include <cmath> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | namespace { |
27 | | |
28 | | // tail probability |
29 | | const Real p_ = 2.880541027242713E-004; |
30 | | const Real q_ = 1.0 - p_; |
31 | | |
32 | | /* The tabulated values were calculated following Marsaglia |
33 | | and Tsang (2000). */ |
34 | | |
35 | | // values of exp(-0.5*x*x) |
36 | | const Real f_ [128] = { |
37 | | 1.000000000000000E+000, 9.635996931557717E-001, |
38 | | 9.362826817083744E-001, 9.130436479920410E-001, |
39 | | 8.922816508023054E-001, 8.732430489268560E-001, |
40 | | 8.555006078850665E-001, 8.387836053106493E-001, |
41 | | 8.229072113952640E-001, 8.077382946961230E-001, |
42 | | 7.931770117838610E-001, 7.791460859417049E-001, |
43 | | 7.655841739092376E-001, 7.524415591857053E-001, |
44 | | 7.396772436833397E-001, 7.272569183545073E-001, |
45 | | 7.151515074204785E-001, 7.033360990258188E-001, |
46 | | 6.917891434460373E-001, 6.804918410064157E-001, |
47 | | 6.694276673577075E-001, 6.585820000586550E-001, |
48 | | 6.479418211185520E-001, 6.374954773431460E-001, |
49 | | 6.272324852578157E-001, 6.171433708265636E-001, |
50 | | 6.072195366326060E-001, 5.974531509518134E-001, |
51 | | 5.878370544418217E-001, 5.783646811267034E-001, |
52 | | 5.690299910747226E-001, 5.598274127106959E-001, |
53 | | 5.507517931210564E-001, 5.417983550317252E-001, |
54 | | 5.329626593899887E-001, 5.242405726789938E-001, |
55 | | 5.156282382498731E-001, 5.071220510813057E-001, |
56 | | 4.987186354765854E-001, 4.904148252893227E-001, |
57 | | 4.822076463348397E-001, 4.740943006982505E-001, |
58 | | 4.660721526945719E-001, 4.581387162728729E-001, |
59 | | 4.502916436869279E-001, 4.425287152802475E-001, |
60 | | 4.348478302546628E-001, 4.272469983095633E-001, |
61 | | 4.197243320540391E-001, 4.122780401070255E-001, |
62 | | 4.049064208114891E-001, 3.976078564980433E-001, |
63 | | 3.903808082413902E-001, 3.832238110598844E-001, |
64 | | 3.761354695144552E-001, 3.691144536682758E-001, |
65 | | 3.621594953730338E-001, 3.552693848515477E-001, |
66 | | 3.484429675498729E-001, 3.416791412350141E-001, |
67 | | 3.349768533169716E-001, 3.283350983761528E-001, |
68 | | 3.217529158792090E-001, 3.152293880681579E-001, |
69 | | 3.087636380092523E-001, 3.023548277894802E-001, |
70 | | 2.960021568498564E-001, 2.897048604458110E-001, |
71 | | 2.834622082260129E-001, 2.772735029218981E-001, |
72 | | 2.711380791410257E-001, 2.650553022581624E-001, |
73 | | 2.590245673987112E-001, 2.530452985097663E-001, |
74 | | 2.471169475146971E-001, 2.412389935477517E-001, |
75 | | 2.354109422657280E-001, 2.296323252343031E-001, |
76 | | 2.239026993871343E-001, 2.182216465563709E-001, |
77 | | 2.125887730737364E-001, 2.070037094418741E-001, |
78 | | 2.014661100762035E-001, 1.959756531181106E-001, |
79 | | 1.905320403209139E-001, 1.851349970107136E-001, |
80 | | 1.797842721249623E-001, 1.744796383324025E-001, |
81 | | 1.692208922389250E-001, 1.640078546849280E-001, |
82 | | 1.588403711409353E-001, 1.537183122095867E-001, |
83 | | 1.486415742436971E-001, 1.436100800919331E-001, |
84 | | 1.386237799858510E-001, 1.336826525846477E-001, |
85 | | 1.287867061971040E-001, 1.239359802039816E-001, |
86 | | 1.191305467087186E-001, 1.143705124498883E-001, |
87 | | 1.096560210158178E-001, 1.049872554103546E-001, |
88 | | 1.003644410295456E-001, 9.578784912257826E-002, |
89 | | 9.125780082763474E-002, 8.677467189554304E-002, |
90 | | 8.233889824295743E-002, 7.795098251465470E-002, |
91 | | 7.361150188475492E-002, 6.932111739418027E-002, |
92 | | 6.508058521363191E-002, 6.089077034856640E-002, |
93 | | 5.675266348153862E-002, 5.266740190350321E-002, |
94 | | 4.863629586028410E-002, 4.466086220087247E-002, |
95 | | 4.074286807479065E-002, 3.688438878696881E-002, |
96 | | 3.308788614650520E-002, 2.935631744025387E-002, |
97 | | 2.569329193614964E-002, 2.210330461611161E-002, |
98 | | 1.859210273716583E-002, 1.516729801067205E-002, |
99 | | 1.183947865798232E-002, 8.624484412930473E-003, |
100 | | 5.548995220816476E-003, 2.669629083902507E-003 |
101 | | }; |
102 | | |
103 | | // acceptance thresholds 2^24*x[i]/x[i+1]. k_[0] is special |
104 | | const Size k_[128] = { |
105 | | 15555141, 0, 12590647, 14272656, |
106 | | 14988942, 15384587, 15635012, 15807564, |
107 | | 15933580, 16029597, 16105158, 16166150, |
108 | | 16216402, 16258511, 16294298, 16325081, |
109 | | 16351834, 16375294, 16396029, 16414482, |
110 | | 16431005, 16445883, 16459346, 16471581, |
111 | | 16482747, 16492974, 16502372, 16511034, |
112 | | 16519042, 16526462, 16533356, 16539772, |
113 | | 16545758, 16551351, 16556587, 16561496, |
114 | | 16566104, 16570437, 16574515, 16578357, |
115 | | 16581980, 16585401, 16588633, 16591688, |
116 | | 16594579, 16597314, 16599905, 16602358, |
117 | | 16604682, 16606885, 16608972, 16610949, |
118 | | 16612822, 16614597, 16616276, 16617865, |
119 | | 16619367, 16620786, 16622125, 16623387, |
120 | | 16624575, 16625690, 16626735, 16627713, |
121 | | 16628624, 16629470, 16630253, 16630974, |
122 | | 16631634, 16632233, 16632773, 16633254, |
123 | | 16633677, 16634041, 16634346, 16634593, |
124 | | 16634781, 16634910, 16634979, 16634987, |
125 | | 16634934, 16634817, 16634637, 16634390, |
126 | | 16634075, 16633689, 16633231, 16632698, |
127 | | 16632085, 16631390, 16630609, 16629737, |
128 | | 16628768, 16627698, 16626520, 16625226, |
129 | | 16623808, 16622257, 16620563, 16618714, |
130 | | 16616696, 16614494, 16612091, 16609465, |
131 | | 16606593, 16603449, 16599999, 16596206, |
132 | | 16592025, 16587402, 16582273, 16576559, |
133 | | 16570163, 16562965, 16554812, 16545511, |
134 | | 16534809, 16522368, 16507733, 16490265, |
135 | | 16469045, 16442690, 16409026, 16364394, |
136 | | 16302111, 16208408, 16049219, 15707338 |
137 | | }; |
138 | | |
139 | | // values of 2^{-24}*x[i]. w_[0] is special. |
140 | | const double w_[128] = { |
141 | | 2.213171867573477E-007, 1.623158840564778E-008, |
142 | | 2.162882274558596E-008, 2.542424120326624E-008, |
143 | | 2.845751269184242E-008, 3.103351823837397E-008, |
144 | | 3.330064883086164E-008, 3.534334554922425E-008, |
145 | | 3.721467240506913E-008, 3.895036212891571E-008, |
146 | | 4.057573787247544E-008, 4.210946627340346E-008, |
147 | | 4.356574479471913E-008, 4.495565083232566E-008, |
148 | | 4.628801273561392E-008, 4.756999377168848E-008, |
149 | | 4.880749623079987E-008, 5.000544871575862E-008, |
150 | | 5.116801519263080E-008, 5.229875022755345E-008, |
151 | | 5.340071633852936E-008, 5.447657412343023E-008, |
152 | | 5.552865246542405E-008, 5.655900391923845E-008, |
153 | | 5.756944891143612E-008, 5.856161138431779E-008, |
154 | | 5.953694781545649E-008, 6.049677105184184E-008, |
155 | | 6.144227004387700E-008, 6.237452630714050E-008, |
156 | | 6.329452775023089E-008, 6.420318036567782E-008, |
157 | | 6.510131817439508E-008, 6.598971173307500E-008, |
158 | | 6.686907545162751E-008, 6.774007391947947E-008, |
159 | | 6.860332740181531E-008, 6.945941663712532E-008, |
160 | | 7.030888704386109E-008, 7.115225242518010E-008, |
161 | | 7.198999824564194E-008, 7.282258454149729E-008, |
162 | | 7.365044851627824E-008, 7.447400686528278E-008, |
163 | | 7.529365786588351E-008, 7.610978326509584E-008, |
164 | | 7.692274999129007E-008, 7.773291171314836E-008, |
165 | | 7.854061026581177E-008, 7.934617696152180E-008, |
166 | | 8.014993379984568E-008, 8.095219459071287E-008, |
167 | | 8.175326600192373E-008, 8.255344854147119E-008, |
168 | | 8.335303748390705E-008, 8.415232374905104E-008, |
169 | | 8.495159474056128E-008, 8.575113515123489E-008, |
170 | | 8.655122774137352E-008, 8.735215409611426E-008, |
171 | | 8.815419536728245E-008, 8.895763300505963E-008, |
172 | | 8.976274948457178E-008, 9.056982903238356E-008, |
173 | | 9.137915835783214E-008, 9.219102739414587E-008, |
174 | | 9.300573005436895E-008, 9.382356500725440E-008, |
175 | | 9.464483647849558E-008, 9.546985508294559E-008, |
176 | | 9.629893869382930E-008, 9.713241335539087E-008, |
177 | | 9.797061424595009E-008, 9.881388669897357E-008, |
178 | | 9.966258729051657E-008, 1.005170850022725E-007, |
179 | | 1.013777624705017E-007, 1.022450173323223E-007, |
180 | | 1.031192636822607E-007, 1.040009336536155E-007, |
181 | | 1.048904791411299E-007, 1.057883736837368E-007, |
182 | | 1.066951145288121E-007, 1.076112249025135E-007, |
183 | | 1.085372565144899E-007, 1.094737923296323E-007, |
184 | | 1.104214496447496E-007, 1.113808835142578E-007, |
185 | | 1.123527905763905E-007, 1.133379133403490E-007, |
186 | | 1.143370450055439E-007, 1.153510348970830E-007, |
187 | | 1.163807946174674E-007, 1.174273050337859E-007, |
188 | | 1.184916242434419E-007, 1.195748966907839E-007, |
189 | | 1.206783636434635E-007, 1.218033752829236E-007, |
190 | | 1.229514047207811E-007, 1.241240643255547E-007, |
191 | | 1.253231248369812E-007, 1.265505378645533E-007, |
192 | | 1.278084625218070E-007, 1.290992971506620E-007, |
193 | | 1.304257173581136E-007, 1.317907219454484E-007, |
194 | | 1.331976887933646E-007, 1.346504434266883E-007, |
195 | | 1.361533438964878E-007, 1.377113869008423E-007, |
196 | | 1.393303418955523E-007, 1.410169225999109E-007, |
197 | | 1.427790092234294E-007, 1.446259406525023E-007, |
198 | | 1.465689049606532E-007, 1.486214710528821E-007, |
199 | | 1.508003278008381E-007, 1.531263366890930E-007, |
200 | | 1.556260733859904E-007, 1.583341605221148E-007, |
201 | | 1.612969382476045E-007, 1.645785196056458E-007, |
202 | | 1.682713836756925E-007, 1.725163463961286E-007, |
203 | | 1.775441320326934E-007, 1.837747608550914E-007, |
204 | | 1.921108355867039E-007, 2.051961336074264E-007 |
205 | | }; |
206 | | |
207 | | } |
208 | | |
209 | | ZigguratRng::ZigguratRng(unsigned long seed) |
210 | 0 | : mt32_(seed) {} |
211 | | |
212 | 0 | Real ZigguratRng::nextGaussian() const { |
213 | 0 | static const int c[2] = {-1, 1}; |
214 | 0 | Real x; |
215 | |
|
216 | 0 | for (;;) { |
217 | 0 | unsigned long j = mt32_.nextInt32(); // generate 32 bits of randomness |
218 | 0 | int f = j & 1; // 1 bit to choose a tails |
219 | 0 | j >>= 1; |
220 | 0 | unsigned long i = j & 0x7f; // 7 bits to choose a strip |
221 | 0 | j >>= 7; // the last 24 bits for accepttion/rejection |
222 | 0 | x = (c[f]*static_cast<long>(j))*w_[i]; // x is uniform |
223 | | // within the i-th strip |
224 | 0 | if (j < k_[i]) // if true, accept x |
225 | 0 | break; |
226 | | |
227 | | // handle rejections |
228 | 0 | if (i!=0) { // upper strips |
229 | 0 | if ((f_[i-1]-f_[i])*mt32_.nextReal() + f_[i] < std::exp(-0.5*x*x)) |
230 | 0 | break; |
231 | 0 | } else { // base strip, sample from the tail |
232 | 0 | x = c[f]*InverseCumulativeNormal::standard_value( |
233 | 0 | p_*mt32_.nextReal()+q_); |
234 | 0 | break; |
235 | 0 | } |
236 | 0 | } |
237 | |
|
238 | 0 | return x; |
239 | 0 | } |
240 | | |
241 | | } |