/src/quantlib/ql/math/beta.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2003 Ferdinando Ametrano |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/math/beta.hpp> |
21 | | |
22 | | namespace QuantLib { |
23 | | |
24 | | /* |
25 | | The implementation of the algorithm was inspired by |
26 | | "Numerical Recipes in C", 2nd edition, |
27 | | Press, Teukolsky, Vetterling, Flannery, chapter 6 |
28 | | */ |
29 | | Real betaContinuedFraction(Real a, Real b, Real x, |
30 | 0 | Real accuracy, Integer maxIteration) { |
31 | |
|
32 | 0 | Real aa, del; |
33 | 0 | Real qab = a+b; |
34 | 0 | Real qap = a+1.0; |
35 | 0 | Real qam = a-1.0; |
36 | 0 | Real c = 1.0; |
37 | 0 | Real d = 1.0-qab*x/qap; |
38 | 0 | if (std::fabs(d) < QL_EPSILON) |
39 | 0 | d = QL_EPSILON; |
40 | 0 | d = 1.0/d; |
41 | 0 | Real result = d; |
42 | |
|
43 | 0 | Integer m, m2; |
44 | 0 | for (m=1; m<=maxIteration; m++) { |
45 | 0 | m2=2*m; |
46 | 0 | aa=m*(b-m)*x/((qam+m2)*(a+m2)); |
47 | 0 | d=1.0+aa*d; |
48 | 0 | if (std::fabs(d) < QL_EPSILON) d=QL_EPSILON; |
49 | 0 | c=1.0+aa/c; |
50 | 0 | if (std::fabs(c) < QL_EPSILON) c=QL_EPSILON; |
51 | 0 | d=1.0/d; |
52 | 0 | result *= d*c; |
53 | 0 | aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2)); |
54 | 0 | d=1.0+aa*d; |
55 | 0 | if (std::fabs(d) < QL_EPSILON) d=QL_EPSILON; |
56 | 0 | c=1.0+aa/c; |
57 | 0 | if (std::fabs(c) < QL_EPSILON) c=QL_EPSILON; |
58 | 0 | d=1.0/d; |
59 | 0 | del=d*c; |
60 | 0 | result *= del; |
61 | 0 | if (std::fabs(del-1.0) < accuracy) |
62 | 0 | return result; |
63 | 0 | } |
64 | 0 | QL_FAIL("a or b too big, or maxIteration too small in betacf"); |
65 | 0 | } |
66 | | |
67 | | Real incompleteBetaFunction(Real a, Real b, |
68 | | Real x, Real accuracy, |
69 | 0 | Integer maxIteration) { |
70 | |
|
71 | 0 | QL_REQUIRE(a > 0.0, "a must be greater than zero"); |
72 | 0 | QL_REQUIRE(b > 0.0, "b must be greater than zero"); |
73 | | |
74 | | |
75 | 0 | if (x == 0.0) |
76 | 0 | return 0.0; |
77 | 0 | else if (x == 1.0) |
78 | 0 | return 1.0; |
79 | 0 | else |
80 | 0 | QL_REQUIRE(x>0.0 && x<1.0, "x must be in [0,1]"); |
81 | | |
82 | 0 | Real result = std::exp(GammaFunction().logValue(a+b) - |
83 | 0 | GammaFunction().logValue(a) - GammaFunction().logValue(b) + |
84 | 0 | a*std::log(x) + b*std::log(1.0-x)); |
85 | |
|
86 | 0 | if (x < (a+1.0)/(a+b+2.0)) |
87 | 0 | return result * |
88 | 0 | betaContinuedFraction(a, b, x, accuracy, maxIteration)/a; |
89 | 0 | else |
90 | 0 | return 1.0 - result * |
91 | 0 | betaContinuedFraction(b, a, 1.0-x, accuracy, maxIteration)/b; |
92 | 0 | } |
93 | | |
94 | | } |