Coverage Report

Created: 2025-08-05 06:45

/src/quantlib/ql/math/distributions/gammadistribution.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2002, 2003 Sadruddin Rejeb
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <http://quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
#include <ql/math/distributions/gammadistribution.hpp>
21
22
namespace QuantLib {
23
24
0
    Real CumulativeGammaDistribution::operator()(Real x) const {
25
0
        if (x <= 0.0) return 0.0;
26
27
0
        Real gln = GammaFunction().logValue(a_);
28
29
0
        if (x<(a_+1.0)) {
30
0
            Real ap = a_;
31
0
            Real del = 1.0/a_;
32
0
            Real sum = del;
33
0
            for (Size n=1; n<=100; n++) {
34
0
                ap += 1.0;
35
0
                del *= x/ap;
36
0
                sum += del;
37
0
                if (std::fabs(del) < std::fabs(sum)*3.0e-7)
38
0
                    return sum*std::exp(-x + a_*std::log(x) - gln);
39
0
            }
40
0
        } else {
41
0
            Real b = x + 1.0 - a_;
42
0
            Real c = QL_MAX_REAL;
43
0
            Real d = 1.0/b;
44
0
            Real h = d;
45
0
            for (Size n=1; n<=100; n++) {
46
0
                Real an = -1.0*n*(n-a_);
47
0
                b += 2.0;
48
0
                d = an*d + b;
49
0
                if (std::fabs(d) < QL_EPSILON) d = QL_EPSILON;
50
0
                c = b + an/c;
51
0
                if (std::fabs(c) < QL_EPSILON) c = QL_EPSILON;
52
0
                d = 1.0/d;
53
0
                Real del = d*c;
54
0
                h *= del;
55
0
                if (std::fabs(del - 1.0)<QL_EPSILON)
56
0
                    return 1.0-h*std::exp(-x + a_*std::log(x) - gln);
57
0
            }
58
0
        }
59
0
        QL_FAIL("too few iterations");
60
0
    }
61
62
    const Real GammaFunction::c1_ = 76.18009172947146;
63
    const Real GammaFunction::c2_ = -86.50532032941677;
64
    const Real GammaFunction::c3_ = 24.01409824083091;
65
    const Real GammaFunction::c4_ = -1.231739572450155;
66
    const Real GammaFunction::c5_ = 0.1208650973866179e-2;
67
    const Real GammaFunction::c6_ = -0.5395239384953e-5;
68
69
0
    Real GammaFunction::logValue(Real x) const {
70
0
        QL_REQUIRE(x>0.0, "positive argument required");
71
0
        Real temp = x + 5.5;
72
0
        temp -= (x + 0.5)*std::log(temp);
73
0
        Real ser=1.000000000190015;
74
0
        ser += c1_/(x + 1.0);
75
0
        ser += c2_/(x + 2.0);
76
0
        ser += c3_/(x + 3.0);
77
0
        ser += c4_/(x + 4.0);
78
0
        ser += c5_/(x + 5.0);
79
0
        ser += c6_/(x + 6.0);
80
81
0
        return -temp+std::log(2.5066282746310005*ser/x);
82
0
    }
83
84
0
    Real GammaFunction::value(Real x) const {
85
0
        if (x >= 1.0) {
86
0
            return std::exp(logValue(x));
87
0
        }
88
0
        else {
89
0
            if (x > -20.0) {
90
                // \Gamma(x) = \frac{\Gamma(x+1)}{x}
91
0
                return value(x+1.0)/x;
92
0
            }
93
0
            else {
94
                // \Gamma(-x) = -\frac{\pi}{\Gamma(x)\sin(\pi x) x}
95
0
                return -M_PI/(value(-x)*x*std::sin(M_PI*x));
96
0
            }
97
0
        }
98
0
    }
99
}