/src/quantlib/ql/math/errorfunction.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | // NOTE: The following copyright notice |
4 | | // applies only to the (modified) code of erff. |
5 | | // |
6 | | |
7 | | // erff |
8 | | // ==== |
9 | | // |
10 | | // Based on code from the gnu C library, originally written by Sun. |
11 | | // Modified to remove reliance on features of gcc and 64-bit width |
12 | | // of doubles. No doubt this results in some slight deterioration |
13 | | // of efficiency, but this is not really noticeable in testing. |
14 | | // |
15 | | |
16 | | // |
17 | | // ==================================================== |
18 | | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
19 | | // |
20 | | // Developed at SunPro, a Sun Microsystems, Inc. business. |
21 | | // Permission to use, copy, modify, and distribute this |
22 | | // software is freely granted, provided that this notice |
23 | | // is preserved. |
24 | | // ==================================================== |
25 | | |
26 | | |
27 | | #include <ql/math/errorfunction.hpp> |
28 | | #include <cfloat> |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | // x |
33 | | // 2 | |
34 | | // erf(x) = --------- | exp(-t*t)dt |
35 | | // sqrt(pi) \| |
36 | | // 0 |
37 | | // |
38 | | // erfc(x) = 1-erf(x) |
39 | | // Note that |
40 | | // erf(-x) = -erf(x) |
41 | | // erfc(-x) = 2 - erfc(x) |
42 | | // |
43 | | // Method: |
44 | | // 1. For |x| in [0, 0.84375] |
45 | | // erf(x) = x + x*R(x^2) |
46 | | // erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
47 | | // = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
48 | | // where R = P/Q where P is an odd poly of degree 8 and |
49 | | // Q is an odd poly of degree 10. |
50 | | // -57.90 |
51 | | // | R - (erf(x)-x)/x | <= 2 |
52 | | // |
53 | | // |
54 | | // Remark. The formula is derived by noting |
55 | | // erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
56 | | // and that |
57 | | // 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
58 | | // is close to one. The interval is chosen because the fix |
59 | | // point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
60 | | // near 0.6174), and by some experiment, 0.84375 is chosen to |
61 | | // guarantee the error is less than one ulp for erf. |
62 | | // |
63 | | // 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
64 | | // c = 0.84506291151 rounded to single (24 bits) |
65 | | // erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
66 | | // erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
67 | | // 1+(c+P1(s)/Q1(s)) if x < 0 |
68 | | // |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 |
69 | | // Remark: here we use the taylor series expansion at x=1. |
70 | | // erf(1+s) = erf(1) + s*Poly(s) |
71 | | // = 0.845.. + P1(s)/Q1(s) |
72 | | // That is, we use rational approximation to approximate |
73 | | // erf(1+s) - (c = (single)0.84506291151) |
74 | | // Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
75 | | // where |
76 | | // P1(s) = degree 6 poly in s |
77 | | // Q1(s) = degree 6 poly in s |
78 | | // |
79 | | // 3. For x in [1.25,1/0.35(~2.857143)], |
80 | | // erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) |
81 | | // erf(x) = 1 - erfc(x) |
82 | | // where |
83 | | // R1(z) = degree 7 poly in z, (z=1/x^2) |
84 | | // S1(z) = degree 8 poly in z |
85 | | // |
86 | | // 4. For x in [1/0.35,28] |
87 | | // erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
88 | | // = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 |
89 | | // = 2.0 - tiny (if x <= -6) |
90 | | // erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else |
91 | | // erf(x) = sign(x)*(1.0 - tiny) |
92 | | // where |
93 | | // R2(z) = degree 6 poly in z, (z=1/x^2) |
94 | | // S2(z) = degree 7 poly in z |
95 | | // |
96 | | // Note1: |
97 | | // To compute exp(-x*x-0.5625+R/S), let s be a single |
98 | | // precision number and s := x; then |
99 | | // -x*x = -s*s + (s-x)*(s+x) |
100 | | // exp(-x*x-0.5626+R/S) = |
101 | | // exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
102 | | // Note2: |
103 | | // Here 4 and 5 make use of the asymptotic series |
104 | | // exp(-x*x) |
105 | | // erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
106 | | // x*sqrt(pi) |
107 | | // We use rational approximation to approximate |
108 | | // g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 |
109 | | // Here is the error bound for R1/S1 and R2/S2 |
110 | | // |R1/S1 - f(x)| < 2**(-62.57) |
111 | | // |R2/S2 - f(x)| < 2**(-61.52) |
112 | | // |
113 | | // 5. For inf > x >= 28 |
114 | | // erf(x) = sign(x) *(1 - tiny) (raise inexact) |
115 | | // erfc(x) = tiny*tiny (raise underflow) if x > 0 |
116 | | // = 2 - tiny if x<0 |
117 | | // |
118 | | // 7. Special case: |
119 | | // erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
120 | | // erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
121 | | // erfc/erf(NaN) is NaN |
122 | | |
123 | | const Real |
124 | | ErrorFunction::tiny = QL_EPSILON, |
125 | | ErrorFunction::one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
126 | | /* c = (float)0.84506291151 */ |
127 | | ErrorFunction::erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ |
128 | | // |
129 | | // Coefficients for approximation to erf on [0,0.84375] |
130 | | // |
131 | | ErrorFunction::efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ |
132 | | ErrorFunction::efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ |
133 | | ErrorFunction::pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ |
134 | | ErrorFunction::pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ |
135 | | ErrorFunction::pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ |
136 | | ErrorFunction::pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ |
137 | | ErrorFunction::pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ |
138 | | ErrorFunction::qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ |
139 | | ErrorFunction::qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ |
140 | | ErrorFunction::qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ |
141 | | ErrorFunction::qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ |
142 | | ErrorFunction::qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ |
143 | | // |
144 | | // Coefficients for approximation to erf in [0.84375,1.25] |
145 | | // |
146 | | ErrorFunction::pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ |
147 | | ErrorFunction::pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ |
148 | | ErrorFunction::pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ |
149 | | ErrorFunction::pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ |
150 | | ErrorFunction::pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ |
151 | | ErrorFunction::pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ |
152 | | ErrorFunction::pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ |
153 | | ErrorFunction::qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ |
154 | | ErrorFunction::qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ |
155 | | ErrorFunction::qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ |
156 | | ErrorFunction::qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ |
157 | | ErrorFunction::qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ |
158 | | ErrorFunction::qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ |
159 | | // |
160 | | // Coefficients for approximation to erfc in [1.25,1/0.35] |
161 | | // |
162 | | ErrorFunction::ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ |
163 | | ErrorFunction::ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ |
164 | | ErrorFunction::ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ |
165 | | ErrorFunction::ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ |
166 | | ErrorFunction::ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ |
167 | | ErrorFunction::ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ |
168 | | ErrorFunction::ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ |
169 | | ErrorFunction::ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ |
170 | | ErrorFunction::sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ |
171 | | ErrorFunction::sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ |
172 | | ErrorFunction::sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ |
173 | | ErrorFunction::sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ |
174 | | ErrorFunction::sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ |
175 | | ErrorFunction::sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ |
176 | | ErrorFunction::sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ |
177 | | ErrorFunction::sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ |
178 | | // |
179 | | // Coefficients for approximation to erfc in [1/.35,28] |
180 | | // |
181 | | ErrorFunction::rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ |
182 | | ErrorFunction::rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ |
183 | | ErrorFunction::rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ |
184 | | ErrorFunction::rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ |
185 | | ErrorFunction::rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ |
186 | | ErrorFunction::rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ |
187 | | ErrorFunction::rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ |
188 | | ErrorFunction::sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ |
189 | | ErrorFunction::sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ |
190 | | ErrorFunction::sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ |
191 | | ErrorFunction::sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ |
192 | | ErrorFunction::sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ |
193 | | ErrorFunction::sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ |
194 | | ErrorFunction::sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ |
195 | | |
196 | 0 | Real ErrorFunction::operator()(Real x) const { |
197 | |
|
198 | 0 | Real R,S,P,Q,s,y,z,r, ax; |
199 | |
|
200 | 0 | if (!std::isfinite(x)) { |
201 | 0 | if (std::isnan(x)) |
202 | 0 | return x; |
203 | 0 | else |
204 | 0 | return ( x > 0 ? 1 : -1); |
205 | 0 | } |
206 | | |
207 | 0 | ax = std::fabs(x); |
208 | |
|
209 | 0 | if(ax < 0.84375) { /* |x|<0.84375 */ |
210 | 0 | if(ax < 3.7252902984e-09) { /* |x|<2**-28 */ |
211 | 0 | if (ax < DBL_MIN*16) |
212 | 0 | return 0.125*(8.0*x+efx8*x); /*avoid underflow */ |
213 | 0 | return x + efx*x; |
214 | 0 | } |
215 | 0 | z = x*x; |
216 | 0 | r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
217 | 0 | s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
218 | 0 | y = r/s; |
219 | 0 | return x + x*y; |
220 | 0 | } |
221 | 0 | if(ax <1.25) { /* 0.84375 <= |x| < 1.25 */ |
222 | 0 | s = ax-one; |
223 | 0 | P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
224 | 0 | Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
225 | 0 | if(x>=0) return erx + P/Q; else return -erx - P/Q; |
226 | 0 | } |
227 | 0 | if (ax >= 6) { /* inf>|x|>=6 */ |
228 | 0 | if(x>=0) return one-tiny; else return tiny-one; |
229 | 0 | } |
230 | | |
231 | | /* Starts to lose accuracy when ax~5 */ |
232 | 0 | s = one/(ax*ax); |
233 | |
|
234 | 0 | if(ax < 2.85714285714285) { /* |x| < 1/0.35 */ |
235 | 0 | R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7)))))); |
236 | 0 | S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8))))))); |
237 | 0 | } else { /* |x| >= 1/0.35 */ |
238 | 0 | R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6))))); |
239 | 0 | S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7)))))); |
240 | 0 | } |
241 | 0 | r = std::exp( -ax*ax-0.5625 +R/S); |
242 | 0 | if(x>=0) return one-r/ax; else return r/ax-one; |
243 | |
|
244 | 0 | } |
245 | | |
246 | | } |