/src/quantlib/ql/math/modifiedbessel.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2014 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file modifiedbessel.cpp |
21 | | \brief modified Bessel functions of first and second kind |
22 | | */ |
23 | | |
24 | | #include <ql/math/modifiedbessel.hpp> |
25 | | #include <ql/math/distributions/gammadistribution.hpp> |
26 | | |
27 | | #include <cmath> |
28 | | |
29 | | namespace QuantLib { |
30 | | |
31 | | namespace { |
32 | | |
33 | | template <class T> struct I {}; |
34 | 0 | template <> struct I<Real> { Real value() { return 0.0;} }; |
35 | | template <> struct I<std::complex<Real> > { |
36 | 0 | std::complex<Real> value() { return std::complex<Real>(0.0,1.0);} |
37 | | }; |
38 | | template <class T> struct Unweighted { |
39 | 0 | T weightSmallX(const T& x) { return 1.0; } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<double>::weightSmallX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<std::__1::complex<double> >::weightSmallX(std::__1::complex<double> const&) |
40 | 0 | T weight1LargeX(const T& x) { return std::exp(x); } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<double>::weight1LargeX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<std::__1::complex<double> >::weight1LargeX(std::__1::complex<double> const&) |
41 | 0 | T weight2LargeX(const T& x) { return std::exp(-x); } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<double>::weight2LargeX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::Unweighted<std::__1::complex<double> >::weight2LargeX(std::__1::complex<double> const&) |
42 | | }; |
43 | | template <class T> struct ExponentiallyWeighted { |
44 | 0 | T weightSmallX(const T& x) { return std::exp(-x); } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<double>::weightSmallX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<std::__1::complex<double> >::weightSmallX(std::__1::complex<double> const&) |
45 | 0 | T weight1LargeX(const T& x) { return 1.0; } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<double>::weight1LargeX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<std::__1::complex<double> >::weight1LargeX(std::__1::complex<double> const&) |
46 | 0 | T weight2LargeX(const T& x) { return std::exp(-2.0*x); } Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<double>::weight2LargeX(double const&) Unexecuted instantiation: modifiedbessel.cpp:QuantLib::(anonymous namespace)::ExponentiallyWeighted<std::__1::complex<double> >::weight2LargeX(std::__1::complex<double> const&) |
47 | | }; |
48 | | |
49 | | template <class T, template <class> class W> |
50 | 0 | T modifiedBesselFunction_i_impl(Real nu, const T& x) { |
51 | 0 | if (std::abs(x) < 13.0) { |
52 | 0 | const T alpha = std::pow(0.5*x, nu) |
53 | 0 | /GammaFunction().value(1.0+nu); |
54 | 0 | const T Y = 0.25*x*x; |
55 | 0 | Size k=1; |
56 | 0 | T sum=alpha, B_k=alpha; |
57 | |
|
58 | 0 | while (std::abs(B_k*=Y/(k*(k+nu)))>std::abs(sum)*QL_EPSILON) { |
59 | 0 | sum += B_k; |
60 | 0 | QL_REQUIRE(++k < 1000, "max iterations exceeded"); |
61 | 0 | } |
62 | 0 | return sum * W<T>().weightSmallX(x); |
63 | 0 | } |
64 | 0 | else { |
65 | 0 | Real na_k=1.0, sign=1.0; |
66 | 0 | T da_k=T(1.0); |
67 | |
|
68 | 0 | T s1=T(1.0), s2=T(1.0); |
69 | 0 | for (Size k=1; k < 30; ++k) { |
70 | 0 | sign*=-1; |
71 | 0 | na_k *= (4.0 * nu * nu - |
72 | 0 | (2.0 * static_cast<Real>(k) - 1.0) * |
73 | 0 | (2.0 * static_cast<Real>(k) - 1.0)); |
74 | 0 | da_k *= (8.0 * k) * x; |
75 | 0 | const T a_k = na_k/da_k; |
76 | |
|
77 | 0 | s2+=a_k; |
78 | 0 | s1+=sign*a_k; |
79 | 0 | } |
80 | |
|
81 | 0 | const T i = I<T>().value(); |
82 | 0 | return 1.0 / std::sqrt(2 * M_PI * x) * |
83 | 0 | (W<T>().weight1LargeX(x) * s1 + |
84 | 0 | i * std::exp(i * nu * M_PI) * W<T>().weight2LargeX(x) * s2); |
85 | 0 | } |
86 | 0 | } Unexecuted instantiation: modifiedbessel.cpp:double QuantLib::(anonymous namespace)::modifiedBesselFunction_i_impl<double, QuantLib::(anonymous namespace)::Unweighted>(double, double const&) Unexecuted instantiation: modifiedbessel.cpp:std::__1::complex<double> QuantLib::(anonymous namespace)::modifiedBesselFunction_i_impl<std::__1::complex<double>, QuantLib::(anonymous namespace)::Unweighted>(double, std::__1::complex<double> const&) Unexecuted instantiation: modifiedbessel.cpp:double QuantLib::(anonymous namespace)::modifiedBesselFunction_i_impl<double, QuantLib::(anonymous namespace)::ExponentiallyWeighted>(double, double const&) Unexecuted instantiation: modifiedbessel.cpp:std::__1::complex<double> QuantLib::(anonymous namespace)::modifiedBesselFunction_i_impl<std::__1::complex<double>, QuantLib::(anonymous namespace)::ExponentiallyWeighted>(double, std::__1::complex<double> const&) |
87 | | |
88 | | template <class T, template <class> class W> |
89 | 0 | T modifiedBesselFunction_k_impl(Real nu, const T& x) { |
90 | 0 | return M_PI_2 * (modifiedBesselFunction_i_impl<T,W>(-nu, x) - |
91 | 0 | modifiedBesselFunction_i_impl<T,W>(nu, x)) / |
92 | 0 | std::sin(M_PI * nu); |
93 | 0 | } Unexecuted instantiation: modifiedbessel.cpp:double QuantLib::(anonymous namespace)::modifiedBesselFunction_k_impl<double, QuantLib::(anonymous namespace)::Unweighted>(double, double const&) Unexecuted instantiation: modifiedbessel.cpp:std::__1::complex<double> QuantLib::(anonymous namespace)::modifiedBesselFunction_k_impl<std::__1::complex<double>, QuantLib::(anonymous namespace)::Unweighted>(double, std::__1::complex<double> const&) Unexecuted instantiation: modifiedbessel.cpp:double QuantLib::(anonymous namespace)::modifiedBesselFunction_k_impl<double, QuantLib::(anonymous namespace)::ExponentiallyWeighted>(double, double const&) Unexecuted instantiation: modifiedbessel.cpp:std::__1::complex<double> QuantLib::(anonymous namespace)::modifiedBesselFunction_k_impl<std::__1::complex<double>, QuantLib::(anonymous namespace)::ExponentiallyWeighted>(double, std::__1::complex<double> const&) |
94 | | } |
95 | | |
96 | 0 | Real modifiedBesselFunction_i(Real nu, Real x) { |
97 | 0 | QL_REQUIRE(x >= 0.0, "negative argument requires complex version of " |
98 | 0 | "modifiedBesselFunction"); |
99 | 0 | return modifiedBesselFunction_i_impl<Real, Unweighted>(nu, x); |
100 | 0 | } |
101 | | |
102 | | std::complex<Real> modifiedBesselFunction_i(Real nu, |
103 | 0 | const std::complex<Real> &z) { |
104 | 0 | if (z.imag() == 0.0 && z.real() >= 0.0) |
105 | 0 | return std::complex<Real>(modifiedBesselFunction_i(nu, z.real())); |
106 | | |
107 | 0 | return modifiedBesselFunction_i_impl< |
108 | 0 | std::complex<Real>, Unweighted>(nu, z); |
109 | 0 | } |
110 | | |
111 | 0 | Real modifiedBesselFunction_k(Real nu, Real x) { |
112 | 0 | return modifiedBesselFunction_k_impl<Real, Unweighted>(nu, x); |
113 | 0 | } |
114 | | |
115 | | std::complex<Real> modifiedBesselFunction_k(Real nu, |
116 | 0 | const std::complex<Real> &z) { |
117 | 0 | if (z.imag() == 0.0 && z.real() >= 0.0) |
118 | 0 | return std::complex<Real>(modifiedBesselFunction_k(nu, z.real())); |
119 | | |
120 | 0 | return modifiedBesselFunction_k_impl< |
121 | 0 | std::complex<Real>, Unweighted>(nu, z); |
122 | 0 | } |
123 | | |
124 | 0 | Real modifiedBesselFunction_i_exponentiallyWeighted(Real nu, Real x) { |
125 | 0 | QL_REQUIRE(x >= 0.0, "negative argument requires complex version of " |
126 | 0 | "modifiedBesselFunction"); |
127 | 0 | return modifiedBesselFunction_i_impl<Real, ExponentiallyWeighted>( |
128 | 0 | nu, x); |
129 | 0 | } |
130 | | |
131 | | std::complex<Real> modifiedBesselFunction_i_exponentiallyWeighted( |
132 | 0 | Real nu, const std::complex<Real> &z) { |
133 | |
|
134 | 0 | if (z.imag() == 0.0 && z.real() >= 0.0) |
135 | 0 | return std::complex<Real>( |
136 | 0 | modifiedBesselFunction_i_exponentiallyWeighted(nu, z.real())); |
137 | | |
138 | 0 | return modifiedBesselFunction_i_impl< |
139 | 0 | std::complex<Real>, ExponentiallyWeighted>(nu, z); |
140 | 0 | } |
141 | | |
142 | 0 | Real modifiedBesselFunction_k_exponentiallyWeighted(Real nu, Real x) { |
143 | 0 | return modifiedBesselFunction_k_impl<Real, ExponentiallyWeighted>( |
144 | 0 | nu, x); |
145 | 0 | } |
146 | | |
147 | | std::complex<Real> modifiedBesselFunction_k_exponentiallyWeighted( |
148 | 0 | Real nu, const std::complex<Real> &z) { |
149 | |
|
150 | 0 | if (z.imag() == 0.0 && z.real() >= 0.0) |
151 | 0 | return std::complex<Real>( |
152 | 0 | modifiedBesselFunction_k_exponentiallyWeighted(nu, z.real())); |
153 | | |
154 | 0 | return modifiedBesselFunction_k_impl< |
155 | 0 | std::complex<Real>, ExponentiallyWeighted>(nu, z); |
156 | 0 | } |
157 | | |
158 | | } |