Coverage Report

Created: 2025-08-05 06:45

/src/quantlib/ql/math/optimization/linesearchbasedmethod.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2006 Ferdinando Ametrano
5
 Copyright (C) 2009 Frédéric Degraeve
6
7
 This file is part of QuantLib, a free-software/open-source library
8
 for financial quantitative analysts and developers - http://quantlib.org/
9
10
 QuantLib is free software: you can redistribute it and/or modify it
11
 under the terms of the QuantLib license.  You should have received a
12
 copy of the license along with this program; if not, please email
13
 <quantlib-dev@lists.sf.net>. The license is also available online at
14
 <http://quantlib.org/license.shtml>.
15
16
 This program is distributed in the hope that it will be useful, but WITHOUT
17
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18
 FOR A PARTICULAR PURPOSE.  See the license for more details.
19
*/
20
21
#include <ql/math/optimization/armijo.hpp>
22
#include <ql/math/optimization/linesearch.hpp>
23
#include <ql/math/optimization/linesearchbasedmethod.hpp>
24
#include <ql/math/optimization/problem.hpp>
25
#include <utility>
26
27
namespace QuantLib {
28
29
    LineSearchBasedMethod::LineSearchBasedMethod(ext::shared_ptr<LineSearch> lineSearch)
30
0
    : lineSearch_(std::move(lineSearch)) {
31
0
        if (!lineSearch_)
32
0
           lineSearch_ = ext::shared_ptr<LineSearch>(new ArmijoLineSearch);
33
0
    }
34
35
    EndCriteria::Type
36
    LineSearchBasedMethod::minimize(Problem& P,
37
0
                                    const EndCriteria& endCriteria) {
38
        // Initializations
39
0
        Real ftol = endCriteria.functionEpsilon();
40
0
        Size maxStationaryStateIterations_
41
0
            = endCriteria.maxStationaryStateIterations();
42
0
        EndCriteria::Type ecType = EndCriteria::None;   // reset end criteria
43
0
        P.reset();                                      // reset problem
44
0
        Array x_ = P.currentValue();              // store the starting point
45
0
        Size iterationNumber_ = 0;
46
        // dimension line search
47
0
        lineSearch_->searchDirection() = Array(x_.size());
48
0
        bool done = false;
49
50
        // function and squared norm of gradient values;
51
0
        Real fnew, fold, gold2;
52
0
        Real fdiff;
53
        // classical initial value for line-search step
54
0
        Real t = 1.0;
55
        // Set gradient g at the size of the optimization problem
56
        // search direction
57
0
        Size sz = lineSearch_->searchDirection().size();
58
0
        Array prevGradient(sz), d(sz), sddiff(sz), direction(sz);
59
        // Initialize cost function, gradient prevGradient and search direction
60
0
        P.setFunctionValue(P.valueAndGradient(prevGradient, x_));
61
0
        P.setGradientNormValue(DotProduct(prevGradient, prevGradient));
62
0
        lineSearch_->searchDirection() = -prevGradient;
63
64
0
        bool first_time = true;
65
        // Loop over iterations
66
0
        do {
67
            // Linesearch
68
0
            if (!first_time)
69
0
                prevGradient = lineSearch_->lastGradient();
70
0
            t = (*lineSearch_)(P, ecType, endCriteria, t);
71
            // don't throw: it can fail just because maxIterations exceeded
72
            //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
73
0
            if (lineSearch_->succeed())
74
0
            {
75
                // Updates
76
77
                // New point
78
0
                x_ = lineSearch_->lastX();
79
                // New function value
80
0
                fold = P.functionValue();
81
0
                P.setFunctionValue(lineSearch_->lastFunctionValue());
82
                // New gradient and search direction vectors
83
84
                // orthogonalization coef
85
0
                gold2 = P.gradientNormValue();
86
0
                P.setGradientNormValue(lineSearch_->lastGradientNorm2());
87
88
                // conjugate gradient search direction
89
0
                direction = getUpdatedDirection(P, gold2, prevGradient);
90
91
0
                sddiff = direction - lineSearch_->searchDirection();
92
0
                lineSearch_->searchDirection() = direction;
93
                // Now compute accuracy and check end criteria
94
                // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
95
0
                fnew = P.functionValue();
96
0
                fdiff = 2.0*std::fabs(fnew-fold) /
97
0
                        (std::fabs(fnew) + std::fabs(fold) + QL_EPSILON);
98
0
                if (fdiff < ftol ||
99
0
                    endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
100
0
                    endCriteria.checkStationaryFunctionValue(0.0, 0.0,
101
0
                        maxStationaryStateIterations_, ecType);
102
0
                    endCriteria.checkMaxIterations(iterationNumber_, ecType);
103
0
                    return ecType;
104
0
                }
105
0
                P.setCurrentValue(x_);      // update problem current value
106
0
                ++iterationNumber_;         // Increase iteration number
107
0
                first_time = false;
108
0
            } else {
109
0
                done = true;
110
0
            }
111
0
        } while (!done);
112
0
        P.setCurrentValue(x_);
113
0
        return ecType;
114
0
    }
115
116
}