/src/quantlib/ql/methods/finitedifferences/operators/triplebandlinearop.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2008 Andreas Gaida |
5 | | Copyright (C) 2008 Ralph Schreyer |
6 | | Copyright (C) 2008 Klaus Spanderen |
7 | | Copyright (C) 2014 Johannes Göttker-Schnetmann |
8 | | |
9 | | This file is part of QuantLib, a free-software/open-source library |
10 | | for financial quantitative analysts and developers - http://quantlib.org/ |
11 | | |
12 | | QuantLib is free software: you can redistribute it and/or modify it |
13 | | under the terms of the QuantLib license. You should have received a |
14 | | copy of the license along with this program; if not, please email |
15 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
16 | | <http://quantlib.org/license.shtml>. |
17 | | |
18 | | This program is distributed in the hope that it will be useful, but WITHOUT |
19 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
20 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
21 | | */ |
22 | | |
23 | | #include <ql/methods/finitedifferences/meshers/fdmmesher.hpp> |
24 | | #include <ql/methods/finitedifferences/tridiagonaloperator.hpp> |
25 | | #include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp> |
26 | | #include <ql/methods/finitedifferences/operators/triplebandlinearop.hpp> |
27 | | |
28 | | namespace QuantLib { |
29 | | |
30 | | TripleBandLinearOp::TripleBandLinearOp( |
31 | | Size direction, |
32 | | const ext::shared_ptr<FdmMesher>& mesher) |
33 | 0 | : direction_(direction), |
34 | 0 | i0_ (new Size[mesher->layout()->size()]), |
35 | 0 | i2_ (new Size[mesher->layout()->size()]), |
36 | 0 | reverseIndex_ (new Size[mesher->layout()->size()]), |
37 | 0 | lower_ (new Real[mesher->layout()->size()]), |
38 | 0 | diag_ (new Real[mesher->layout()->size()]), |
39 | 0 | upper_ (new Real[mesher->layout()->size()]), |
40 | 0 | mesher_(mesher) { |
41 | |
|
42 | 0 | std::vector<Size> newDim(mesher->layout()->dim()); |
43 | 0 | std::iter_swap(newDim.begin(), newDim.begin()+direction_); |
44 | 0 | std::vector<Size> newSpacing = FdmLinearOpLayout(newDim).spacing(); |
45 | 0 | std::iter_swap(newSpacing.begin(), newSpacing.begin()+direction_); |
46 | |
|
47 | 0 | for (const auto& iter : *mesher->layout()) { |
48 | 0 | const Size i = iter.index(); |
49 | |
|
50 | 0 | i0_[i] = mesher->layout()->neighbourhood(iter, direction, -1); |
51 | 0 | i2_[i] = mesher->layout()->neighbourhood(iter, direction, 1); |
52 | |
|
53 | 0 | const std::vector<Size>& coordinates = iter.coordinates(); |
54 | 0 | const Size newIndex = |
55 | 0 | std::inner_product(coordinates.begin(), coordinates.end(), |
56 | 0 | newSpacing.begin(), Size(0)); |
57 | 0 | reverseIndex_[newIndex] = i; |
58 | 0 | } |
59 | 0 | } |
60 | | |
61 | | TripleBandLinearOp::TripleBandLinearOp(const TripleBandLinearOp& m) |
62 | 0 | : direction_(m.direction_), |
63 | 0 | i0_ (new Size[m.mesher_->layout()->size()]), |
64 | 0 | i2_ (new Size[m.mesher_->layout()->size()]), |
65 | 0 | reverseIndex_(new Size[m.mesher_->layout()->size()]), |
66 | 0 | lower_(new Real[m.mesher_->layout()->size()]), |
67 | 0 | diag_ (new Real[m.mesher_->layout()->size()]), |
68 | 0 | upper_(new Real[m.mesher_->layout()->size()]), |
69 | 0 | mesher_(m.mesher_) { |
70 | 0 | const Size len = m.mesher_->layout()->size(); |
71 | 0 | std::copy(m.i0_.get(), m.i0_.get() + len, i0_.get()); |
72 | 0 | std::copy(m.i2_.get(), m.i2_.get() + len, i2_.get()); |
73 | 0 | std::copy(m.reverseIndex_.get(), m.reverseIndex_.get()+len, |
74 | 0 | reverseIndex_.get()); |
75 | 0 | std::copy(m.lower_.get(), m.lower_.get() + len, lower_.get()); |
76 | 0 | std::copy(m.diag_.get(), m.diag_.get() + len, diag_.get()); |
77 | 0 | std::copy(m.upper_.get(), m.upper_.get() + len, upper_.get()); |
78 | 0 | } |
79 | | |
80 | 0 | void TripleBandLinearOp::swap(TripleBandLinearOp& m) noexcept { |
81 | 0 | mesher_.swap(m.mesher_); |
82 | 0 | std::swap(direction_, m.direction_); |
83 | |
|
84 | 0 | i0_.swap(m.i0_); i2_.swap(m.i2_); |
85 | 0 | reverseIndex_.swap(m.reverseIndex_); |
86 | 0 | lower_.swap(m.lower_); diag_.swap(m.diag_); upper_.swap(m.upper_); |
87 | 0 | } |
88 | | |
89 | | void TripleBandLinearOp::axpyb(const Array& a, |
90 | | const TripleBandLinearOp& x, |
91 | | const TripleBandLinearOp& y, |
92 | 0 | const Array& b) { |
93 | 0 | const Size size = mesher_->layout()->size(); |
94 | |
|
95 | 0 | Real *diag(diag_.get()); |
96 | 0 | Real *lower(lower_.get()); |
97 | 0 | Real *upper(upper_.get()); |
98 | |
|
99 | 0 | const Real *y_diag (y.diag_.get()); |
100 | 0 | const Real *y_lower(y.lower_.get()); |
101 | 0 | const Real *y_upper(y.upper_.get()); |
102 | |
|
103 | 0 | if (a.empty()) { |
104 | 0 | if (b.empty()) { |
105 | | //#pragma omp parallel for |
106 | 0 | for (Size i=0; i < size; ++i) { |
107 | 0 | diag[i] = y_diag[i]; |
108 | 0 | lower[i] = y_lower[i]; |
109 | 0 | upper[i] = y_upper[i]; |
110 | 0 | } |
111 | 0 | } |
112 | 0 | else { |
113 | 0 | Array::const_iterator bptr(b.begin()); |
114 | 0 | const Size binc = (b.size() > 1) ? 1 : 0; |
115 | | //#pragma omp parallel for |
116 | 0 | for (Size i=0; i < size; ++i) { |
117 | 0 | diag[i] = y_diag[i] + bptr[i*binc]; |
118 | 0 | lower[i] = y_lower[i]; |
119 | 0 | upper[i] = y_upper[i]; |
120 | 0 | } |
121 | 0 | } |
122 | 0 | } |
123 | 0 | else if (b.empty()) { |
124 | 0 | Array::const_iterator aptr(a.begin()); |
125 | 0 | const Size ainc = (a.size() > 1) ? 1 : 0; |
126 | |
|
127 | 0 | const Real *x_diag (x.diag_.get()); |
128 | 0 | const Real *x_lower(x.lower_.get()); |
129 | 0 | const Real *x_upper(x.upper_.get()); |
130 | | |
131 | | //#pragma omp parallel for |
132 | 0 | for (Size i=0; i < size; ++i) { |
133 | 0 | const Real s = aptr[i*ainc]; |
134 | 0 | diag[i] = y_diag[i] + s*x_diag[i]; |
135 | 0 | lower[i] = y_lower[i] + s*x_lower[i]; |
136 | 0 | upper[i] = y_upper[i] + s*x_upper[i]; |
137 | 0 | } |
138 | 0 | } |
139 | 0 | else { |
140 | 0 | Array::const_iterator bptr(b.begin()); |
141 | 0 | const Size binc = (b.size() > 1) ? 1 : 0; |
142 | |
|
143 | 0 | Array::const_iterator aptr(a.begin()); |
144 | 0 | const Size ainc = (a.size() > 1) ? 1 : 0; |
145 | |
|
146 | 0 | const Real *x_diag (x.diag_.get()); |
147 | 0 | const Real *x_lower(x.lower_.get()); |
148 | 0 | const Real *x_upper(x.upper_.get()); |
149 | | |
150 | | //#pragma omp parallel for |
151 | 0 | for (Size i=0; i < size; ++i) { |
152 | 0 | const Real s = aptr[i*ainc]; |
153 | 0 | diag[i] = y_diag[i] + s*x_diag[i] + bptr[i*binc]; |
154 | 0 | lower[i] = y_lower[i] + s*x_lower[i]; |
155 | 0 | upper[i] = y_upper[i] + s*x_upper[i]; |
156 | 0 | } |
157 | 0 | } |
158 | 0 | } |
159 | | |
160 | 0 | TripleBandLinearOp TripleBandLinearOp::add(const TripleBandLinearOp& m) const { |
161 | |
|
162 | 0 | TripleBandLinearOp retVal(direction_, mesher_); |
163 | 0 | const Size size = mesher_->layout()->size(); |
164 | | //#pragma omp parallel for |
165 | 0 | for (Size i=0; i < size; ++i) { |
166 | 0 | retVal.lower_[i]= lower_[i] + m.lower_[i]; |
167 | 0 | retVal.diag_[i] = diag_[i] + m.diag_[i]; |
168 | 0 | retVal.upper_[i]= upper_[i] + m.upper_[i]; |
169 | 0 | } |
170 | |
|
171 | 0 | return retVal; |
172 | 0 | } |
173 | | |
174 | | |
175 | 0 | TripleBandLinearOp TripleBandLinearOp::mult(const Array& u) const { |
176 | |
|
177 | 0 | TripleBandLinearOp retVal(direction_, mesher_); |
178 | |
|
179 | 0 | const Size size = mesher_->layout()->size(); |
180 | | //#pragma omp parallel for |
181 | 0 | for (Size i=0; i < size; ++i) { |
182 | 0 | const Real s = u[i]; |
183 | 0 | retVal.lower_[i]= lower_[i]*s; |
184 | 0 | retVal.diag_[i] = diag_[i]*s; |
185 | 0 | retVal.upper_[i]= upper_[i]*s; |
186 | 0 | } |
187 | |
|
188 | 0 | return retVal; |
189 | 0 | } |
190 | | |
191 | 0 | TripleBandLinearOp TripleBandLinearOp::multR(const Array& u) const { |
192 | 0 | const Size size = mesher_->layout()->size(); |
193 | 0 | QL_REQUIRE(u.size() == size, "inconsistent size of rhs"); |
194 | 0 | TripleBandLinearOp retVal(direction_, mesher_); |
195 | |
|
196 | 0 | #pragma omp parallel for |
197 | 0 | for (long i=0; i < (long)size; ++i) { |
198 | 0 | const Real sm1 = i > 0? u[i-1] : 1.0; |
199 | 0 | const Real s0 = u[i]; |
200 | 0 | const Real sp1 = i < (long)size-1? u[i+1] : 1.0; |
201 | 0 | retVal.lower_[i]= lower_[i]*sm1; |
202 | 0 | retVal.diag_[i] = diag_[i]*s0; |
203 | 0 | retVal.upper_[i]= upper_[i]*sp1; |
204 | 0 | } |
205 | |
|
206 | 0 | return retVal; |
207 | 0 | } |
208 | | |
209 | 0 | TripleBandLinearOp TripleBandLinearOp::add(const Array& u) const { |
210 | |
|
211 | 0 | TripleBandLinearOp retVal(direction_, mesher_); |
212 | |
|
213 | 0 | const Size size = mesher_->layout()->size(); |
214 | | //#pragma omp parallel for |
215 | 0 | for (Size i=0; i < size; ++i) { |
216 | 0 | retVal.lower_[i]= lower_[i]; |
217 | 0 | retVal.upper_[i]= upper_[i]; |
218 | 0 | retVal.diag_[i] = diag_[i]+u[i]; |
219 | 0 | } |
220 | |
|
221 | 0 | return retVal; |
222 | 0 | } |
223 | | |
224 | 0 | Array TripleBandLinearOp::apply(const Array& r) const { |
225 | 0 | QL_REQUIRE(r.size() == mesher_->layout()->size(), "inconsistent length of r"); |
226 | | |
227 | 0 | const Real* lptr = lower_.get(); |
228 | 0 | const Real* dptr = diag_.get(); |
229 | 0 | const Real* uptr = upper_.get(); |
230 | 0 | const Size* i0ptr = i0_.get(); |
231 | 0 | const Size* i2ptr = i2_.get(); |
232 | |
|
233 | 0 | array_type retVal(r.size()); |
234 | | //#pragma omp parallel for |
235 | 0 | for (Size i=0; i < mesher_->layout()->size(); ++i) { |
236 | 0 | retVal[i] = r[i0ptr[i]]*lptr[i]+r[i]*dptr[i]+r[i2ptr[i]]*uptr[i]; |
237 | 0 | } |
238 | |
|
239 | 0 | return retVal; |
240 | 0 | } |
241 | | |
242 | 0 | SparseMatrix TripleBandLinearOp::toMatrix() const { |
243 | 0 | const Size n = mesher_->layout()->size(); |
244 | |
|
245 | 0 | SparseMatrix retVal(n, n, 3*n); |
246 | 0 | for (Size i=0; i < n; ++i) { |
247 | 0 | retVal(i, i0_[i]) += lower_[i]; |
248 | 0 | retVal(i, i ) += diag_[i]; |
249 | 0 | retVal(i, i2_[i]) += upper_[i]; |
250 | 0 | } |
251 | |
|
252 | 0 | return retVal; |
253 | 0 | } |
254 | | |
255 | | |
256 | 0 | Array TripleBandLinearOp::solve_splitting(const Array& r, Real a, Real b) const { |
257 | 0 | QL_REQUIRE(r.size() == mesher_->layout()->size(), "inconsistent size of rhs"); |
258 | | |
259 | | #ifdef QL_EXTRA_SAFETY_CHECKS |
260 | | for (const auto& iter : *mesher_->layout()) { |
261 | | const std::vector<Size>& coordinates = iter.coordinates(); |
262 | | QL_REQUIRE( coordinates[direction_] != 0 |
263 | | || lower_[iter.index()] == 0,"removing non zero entry!"); |
264 | | QL_REQUIRE( coordinates[direction_] != mesher_->layout()->dim()[direction_]-1 |
265 | | || upper_[iter.index()] == 0,"removing non zero entry!"); |
266 | | } |
267 | | #endif |
268 | | |
269 | 0 | Array retVal(r.size()), tmp(r.size()); |
270 | |
|
271 | 0 | const Real* lptr = lower_.get(); |
272 | 0 | const Real* dptr = diag_.get(); |
273 | 0 | const Real* uptr = upper_.get(); |
274 | | |
275 | | // Thomson algorithm to solve a tridiagonal system. |
276 | | // Example code taken from Tridiagonalopertor and |
277 | | // changed to fit for the triple band operator. |
278 | 0 | Size rim1 = reverseIndex_[0]; |
279 | 0 | Real bet=1.0/(a*dptr[rim1]+b); |
280 | 0 | QL_REQUIRE(bet != 0.0, "division by zero"); |
281 | 0 | retVal[reverseIndex_[0]] = r[rim1]*bet; |
282 | |
|
283 | 0 | for (Size j=1; j<=mesher_->layout()->size()-1; j++){ |
284 | 0 | const Size ri = reverseIndex_[j]; |
285 | 0 | tmp[j] = a*uptr[rim1]*bet; |
286 | |
|
287 | 0 | bet=b+a*(dptr[ri]-tmp[j]*lptr[ri]); |
288 | 0 | QL_ENSURE(bet != 0.0, "division by zero"); |
289 | 0 | bet=1.0/bet; |
290 | |
|
291 | 0 | retVal[ri] = (r[ri]-a*lptr[ri]*retVal[rim1])*bet; |
292 | 0 | rim1 = ri; |
293 | 0 | } |
294 | | // cannot be j>=0 with Size j |
295 | 0 | for (Size j=mesher_->layout()->size()-2; j>0; --j) |
296 | 0 | retVal[reverseIndex_[j]] -= tmp[j+1]*retVal[reverseIndex_[j+1]]; |
297 | 0 | retVal[reverseIndex_[0]] -= tmp[1]*retVal[reverseIndex_[1]]; |
298 | |
|
299 | 0 | return retVal; |
300 | 0 | } |
301 | | } |