Coverage Report

Created: 2025-08-05 06:45

/src/quantlib/ql/pricingengines/basket/bjerksundstenslandspreadengine.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2024 Klaus Spanderen
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <http://quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
#include <ql/pricingengines/basket/bjerksundstenslandspreadengine.hpp>
21
#include <ql/math/distributions/normaldistribution.hpp>
22
#include <utility>
23
24
namespace QuantLib {
25
26
    BjerksundStenslandSpreadEngine::BjerksundStenslandSpreadEngine(
27
        ext::shared_ptr<GeneralizedBlackScholesProcess> process1,
28
        ext::shared_ptr<GeneralizedBlackScholesProcess> process2,
29
        Real correlation)
30
0
    : SpreadBlackScholesVanillaEngine(std::move(process1), std::move(process2), correlation) {
31
0
    }
32
33
    Real BjerksundStenslandSpreadEngine::calculate(
34
        Real f1, Real f2, Real k, Option::Type optionType,
35
0
        Real variance1, Real variance2, DiscountFactor df) const {
36
37
0
        const Real cp = (optionType == Option::Call) ? 1 : -1;
38
39
0
        const Real a = f2 + k;
40
0
        const Real b = f2/a;
41
42
0
        const Real sigma1 = std::sqrt(variance1);
43
0
        const Real sigma2 = std::sqrt(variance2);
44
45
0
        const Real stdev = std::sqrt(
46
0
            variance1 + b*b*variance2 - 2*rho_*b*sigma1*sigma2);
47
48
0
        const Real lfa = std::log(f1/a);
49
50
0
        const Real d1 =
51
0
            (lfa + (0.5*variance1 + 0.5*b*b*variance2 - b*rho_*sigma1*sigma2))/stdev;
52
0
        const Real d2 =
53
0
            (lfa + (-0.5*variance1 + variance2*b*(0.5*b - 1) + rho_*sigma1*sigma2))/stdev;
54
0
        const Real d3 = (lfa + (-0.5*variance1 + 0.5*b*b*variance2))/stdev;
55
56
0
        const CumulativeNormalDistribution phi;
57
0
        return df*cp*(f1*phi(cp*d1) - f2*phi(cp*d2) - k*phi(cp*d3));
58
0
    }
59
}
60
61