/src/quantlib/ql/pricingengines/basket/bjerksundstenslandspreadengine.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2024 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/pricingengines/basket/bjerksundstenslandspreadengine.hpp> |
21 | | #include <ql/math/distributions/normaldistribution.hpp> |
22 | | #include <utility> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | BjerksundStenslandSpreadEngine::BjerksundStenslandSpreadEngine( |
27 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process1, |
28 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process2, |
29 | | Real correlation) |
30 | 0 | : SpreadBlackScholesVanillaEngine(std::move(process1), std::move(process2), correlation) { |
31 | 0 | } |
32 | | |
33 | | Real BjerksundStenslandSpreadEngine::calculate( |
34 | | Real f1, Real f2, Real k, Option::Type optionType, |
35 | 0 | Real variance1, Real variance2, DiscountFactor df) const { |
36 | |
|
37 | 0 | const Real cp = (optionType == Option::Call) ? 1 : -1; |
38 | |
|
39 | 0 | const Real a = f2 + k; |
40 | 0 | const Real b = f2/a; |
41 | |
|
42 | 0 | const Real sigma1 = std::sqrt(variance1); |
43 | 0 | const Real sigma2 = std::sqrt(variance2); |
44 | |
|
45 | 0 | const Real stdev = std::sqrt( |
46 | 0 | variance1 + b*b*variance2 - 2*rho_*b*sigma1*sigma2); |
47 | |
|
48 | 0 | const Real lfa = std::log(f1/a); |
49 | |
|
50 | 0 | const Real d1 = |
51 | 0 | (lfa + (0.5*variance1 + 0.5*b*b*variance2 - b*rho_*sigma1*sigma2))/stdev; |
52 | 0 | const Real d2 = |
53 | 0 | (lfa + (-0.5*variance1 + variance2*b*(0.5*b - 1) + rho_*sigma1*sigma2))/stdev; |
54 | 0 | const Real d3 = (lfa + (-0.5*variance1 + 0.5*b*b*variance2))/stdev; |
55 | |
|
56 | 0 | const CumulativeNormalDistribution phi; |
57 | 0 | return df*cp*(f1*phi(cp*d1) - f2*phi(cp*d2) - k*phi(cp*d3)); |
58 | 0 | } |
59 | | } |
60 | | |
61 | | |