/src/quantlib/ql/pricingengines/exotic/analyticholderextensibleoptionengine.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2014 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/exercise.hpp> |
21 | | #include <ql/pricingengines/exotic/analyticholderextensibleoptionengine.hpp> |
22 | | #include <ql/math/distributions/bivariatenormaldistribution.hpp> |
23 | | #include <utility> |
24 | | |
25 | | using std::pow; |
26 | | using std::log; |
27 | | using std::exp; |
28 | | using std::sqrt; |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | AnalyticHolderExtensibleOptionEngine::AnalyticHolderExtensibleOptionEngine( |
33 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process) |
34 | 0 | : process_(std::move(process)) { |
35 | 0 | registerWith(process_); |
36 | 0 | } |
37 | | |
38 | 0 | void AnalyticHolderExtensibleOptionEngine::calculate() const { |
39 | | //Spot |
40 | 0 | Real S = process_->x0(); |
41 | 0 | Real r = riskFreeRate(); |
42 | 0 | Real b = r - dividendYield(); |
43 | 0 | Real X1 = strike(); |
44 | 0 | Real X2 = arguments_.secondStrike; |
45 | 0 | Time T2 = secondExpiryTime(); |
46 | 0 | Time t1 = firstExpiryTime(); |
47 | 0 | Real A = arguments_.premium; |
48 | | |
49 | |
|
50 | 0 | Real z1 = this->z1(); |
51 | |
|
52 | 0 | Real z2 = this->z2(); |
53 | |
|
54 | 0 | Real rho = sqrt(t1 / T2); |
55 | | |
56 | |
|
57 | 0 | ext::shared_ptr<PlainVanillaPayoff> payoff = |
58 | 0 | ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff); |
59 | | |
60 | | //QuantLib requires sigma * sqrt(T) rather than just sigma/volatility |
61 | 0 | Real vol = volatility(); |
62 | | |
63 | | //calculate dividend discount factor assuming continuous compounding (e^-rt) |
64 | 0 | DiscountFactor growth = dividendDiscount(t1); |
65 | | //calculate payoff discount factor assuming continuous compounding |
66 | 0 | DiscountFactor discount = riskFreeDiscount(t1); |
67 | 0 | Real result = 0; |
68 | 0 | constexpr double minusInf = -std::numeric_limits<double>::infinity(); |
69 | |
|
70 | 0 | Real y1 = this->y1(payoff->optionType()), |
71 | 0 | y2 = this->y2(payoff->optionType()); |
72 | 0 | if (payoff->optionType() == Option::Call) { |
73 | | //instantiate payoff function for a call |
74 | 0 | ext::shared_ptr<PlainVanillaPayoff> vanillaCallPayoff = |
75 | 0 | ext::make_shared<PlainVanillaPayoff>(Option::Call, X1); |
76 | 0 | Real BSM = BlackScholesCalculator(vanillaCallPayoff, S, growth, vol*sqrt(t1), discount).value(); |
77 | 0 | result = BSM |
78 | 0 | + S*exp((b - r)*T2)*M2(y1, y2, minusInf, z1, rho) |
79 | 0 | - X2*exp(-r*T2)*M2(y1 - vol*sqrt(t1), y2 - vol*sqrt(t1), minusInf, z1 - vol*sqrt(T2), rho) |
80 | 0 | - S*exp((b - r)*t1)*N2(y1, z2) + X1*exp(-r*t1)*N2(y1 - vol*sqrt(t1), z2 - vol*sqrt(t1)) |
81 | 0 | - A*exp(-r*t1)*N2(y1 - vol*sqrt(t1), y2 - vol*sqrt(t1)); |
82 | 0 | } else { |
83 | | //instantiate payoff function for a call |
84 | 0 | ext::shared_ptr<PlainVanillaPayoff> vanillaPutPayoff = |
85 | 0 | ext::make_shared<PlainVanillaPayoff>(Option::Put, X1); |
86 | 0 | result = BlackScholesCalculator(vanillaPutPayoff, S, growth, vol*sqrt(t1), discount).value() |
87 | 0 | - S*exp((b - r)*T2)*M2(y1, y2, minusInf, -z1, rho) |
88 | 0 | + X2*exp(-r*T2)*M2(y1 - vol*sqrt(t1), y2 - vol*sqrt(t1), minusInf, -z1 + vol*sqrt(T2), rho) |
89 | 0 | + S*exp((b - r)*t1)*N2(z2, y2) - X1*exp(-r*t1)*N2(z2 - vol*sqrt(t1), y2 - vol*sqrt(t1)) |
90 | 0 | - A*exp(-r*t1)*N2(y1 - vol*sqrt(t1), y2 - vol*sqrt(t1)); |
91 | 0 | } |
92 | 0 | this->results_.value = result; |
93 | 0 | } |
94 | | |
95 | 0 | Real AnalyticHolderExtensibleOptionEngine::I1Call() const { |
96 | 0 | Real Sv = process_->x0(); |
97 | 0 | Real A = arguments_.premium; |
98 | |
|
99 | 0 | if(A==0) |
100 | 0 | { |
101 | 0 | return 0; |
102 | 0 | } |
103 | 0 | else |
104 | 0 | { |
105 | 0 | BlackScholesCalculator bs = bsCalculator(Sv, Option::Call); |
106 | 0 | Real ci = bs.value(); |
107 | 0 | Real dc = bs.delta(); |
108 | |
|
109 | 0 | Real yi = ci - A; |
110 | | //da/ds = 0 |
111 | 0 | Real di = dc - 0; |
112 | 0 | Real epsilon = 0.001; |
113 | | |
114 | | //Newton-Raphson process |
115 | 0 | while (std::fabs(yi) > epsilon){ |
116 | 0 | Sv = Sv - yi / di; |
117 | |
|
118 | 0 | bs = bsCalculator(Sv, Option::Call); |
119 | 0 | ci = bs.value(); |
120 | 0 | dc = bs.delta(); |
121 | |
|
122 | 0 | yi = ci - A; |
123 | 0 | di = dc - 0; |
124 | 0 | } |
125 | 0 | return Sv; |
126 | 0 | } |
127 | 0 | } |
128 | | |
129 | 0 | Real AnalyticHolderExtensibleOptionEngine::I2Call() const { |
130 | 0 | Real Sv = process_->x0(); |
131 | 0 | Real X1 = strike(); |
132 | 0 | Real X2 = arguments_.secondStrike; |
133 | 0 | Real A = arguments_.premium; |
134 | 0 | Time T2 = secondExpiryTime(); |
135 | 0 | Time t1 = firstExpiryTime(); |
136 | 0 | Real r=riskFreeRate(); |
137 | |
|
138 | 0 | Real val=X1-X2*std::exp(-r*(T2-t1)); |
139 | 0 | if(A< val){ |
140 | 0 | return std::numeric_limits<Real>::infinity(); |
141 | 0 | } else { |
142 | 0 | BlackScholesCalculator bs = bsCalculator(Sv, Option::Call); |
143 | 0 | Real ci = bs.value(); |
144 | 0 | Real dc = bs.delta(); |
145 | |
|
146 | 0 | Real yi = ci - A - Sv + X1; |
147 | | //da/ds = 1 |
148 | 0 | Real di = dc - 1; |
149 | 0 | Real epsilon = 0.001; |
150 | | |
151 | | //Newton-Raphson process |
152 | 0 | while (std::fabs(yi) > epsilon){ |
153 | 0 | Sv = Sv - yi / di; |
154 | |
|
155 | 0 | bs = bsCalculator(Sv, Option::Call); |
156 | 0 | ci = bs.value(); |
157 | 0 | dc = bs.delta(); |
158 | |
|
159 | 0 | yi = ci - A - Sv + X1; |
160 | 0 | di = dc - 1; |
161 | 0 | } |
162 | 0 | return Sv; |
163 | 0 | } |
164 | 0 | } |
165 | | |
166 | 0 | Real AnalyticHolderExtensibleOptionEngine::I1Put() const { |
167 | 0 | Real Sv = process_->x0(); |
168 | | //Srtike |
169 | 0 | Real X1 = strike(); |
170 | | //Premium |
171 | 0 | Real A = arguments_.premium; |
172 | |
|
173 | 0 | BlackScholesCalculator bs = bsCalculator(Sv, Option::Put); |
174 | 0 | Real pi = bs.value(); |
175 | 0 | Real dc = bs.delta(); |
176 | |
|
177 | 0 | Real yi = pi - A + Sv - X1; |
178 | | //da/ds = 1 |
179 | 0 | Real di = dc - 1; |
180 | 0 | Real epsilon = 0.001; |
181 | | |
182 | | //Newton-Raphson prosess |
183 | 0 | while (std::fabs(yi) > epsilon){ |
184 | 0 | Sv = Sv - yi / di; |
185 | |
|
186 | 0 | bs = bsCalculator(Sv, Option::Put); |
187 | 0 | pi = bs.value(); |
188 | 0 | dc = bs.delta(); |
189 | |
|
190 | 0 | yi = pi - A + Sv - X1; |
191 | 0 | di = dc - 1; |
192 | 0 | } |
193 | 0 | return Sv; |
194 | 0 | } |
195 | | |
196 | 0 | Real AnalyticHolderExtensibleOptionEngine::I2Put() const { |
197 | 0 | Real Sv = process_->x0(); |
198 | 0 | Real A = arguments_.premium; |
199 | 0 | if(A==0){ |
200 | 0 | return std::numeric_limits<Real>::infinity(); |
201 | 0 | } |
202 | 0 | else{ |
203 | 0 | BlackScholesCalculator bs = bsCalculator(Sv, Option::Put); |
204 | 0 | Real pi = bs.value(); |
205 | 0 | Real dc = bs.delta(); |
206 | |
|
207 | 0 | Real yi = pi - A; |
208 | | //da/ds = 0 |
209 | 0 | Real di = dc - 0; |
210 | 0 | Real epsilon = 0.001; |
211 | | |
212 | | //Newton-Raphson prosess |
213 | 0 | while (std::fabs(yi) > epsilon){ |
214 | 0 | Sv = Sv - yi / di; |
215 | |
|
216 | 0 | bs = bsCalculator(Sv, Option::Put); |
217 | 0 | pi = bs.value(); |
218 | 0 | dc = bs.delta(); |
219 | |
|
220 | 0 | yi = pi - A; |
221 | 0 | di = dc - 0; |
222 | 0 | } |
223 | 0 | return Sv; |
224 | 0 | } |
225 | 0 | } |
226 | | |
227 | | |
228 | | BlackScholesCalculator AnalyticHolderExtensibleOptionEngine::bsCalculator( |
229 | 0 | Real spot, Option::Type optionType) const { |
230 | | //Real spot = process_->x0(); |
231 | 0 | Real vol; |
232 | 0 | DiscountFactor growth; |
233 | 0 | DiscountFactor discount; |
234 | 0 | Real X2 = arguments_.secondStrike; |
235 | 0 | Time T2 = secondExpiryTime(); |
236 | 0 | Time t1 = firstExpiryTime(); |
237 | 0 | Time t = T2 - t1; |
238 | | |
239 | | //payoff |
240 | 0 | ext::shared_ptr<PlainVanillaPayoff > vanillaPayoff = |
241 | 0 | ext::make_shared<PlainVanillaPayoff>(optionType, X2); |
242 | | |
243 | | //QuantLib requires sigma * sqrt(T) rather than just sigma/volatility |
244 | 0 | vol = volatility() * std::sqrt(t); |
245 | | //calculate dividend discount factor assuming continuous compounding (e^-rt) |
246 | 0 | growth = dividendDiscount(t); |
247 | | //calculate payoff discount factor assuming continuous compounding |
248 | 0 | discount = riskFreeDiscount(t); |
249 | |
|
250 | 0 | BlackScholesCalculator bs(vanillaPayoff, spot, growth, vol, discount); |
251 | 0 | return bs; |
252 | 0 | } |
253 | | |
254 | 0 | Real AnalyticHolderExtensibleOptionEngine::M2(Real a, Real b, Real c, Real d, Real rho) const { |
255 | 0 | BivariateCumulativeNormalDistributionDr78 CmlNormDist(rho); |
256 | 0 | return CmlNormDist(b, d) - CmlNormDist(a, d) - CmlNormDist(b, c) + CmlNormDist(a,c); |
257 | 0 | } |
258 | | |
259 | 0 | Real AnalyticHolderExtensibleOptionEngine::N2(Real a, Real b) const { |
260 | 0 | CumulativeNormalDistribution NormDist; |
261 | 0 | return NormDist(b) - NormDist(a); |
262 | 0 | } |
263 | | |
264 | 0 | Real AnalyticHolderExtensibleOptionEngine::strike() const { |
265 | 0 | ext::shared_ptr<PlainVanillaPayoff> payoff = |
266 | 0 | ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff); |
267 | 0 | QL_REQUIRE(payoff, "non-plain payoff given"); |
268 | 0 | return payoff->strike(); |
269 | 0 | } |
270 | | |
271 | 0 | Time AnalyticHolderExtensibleOptionEngine::firstExpiryTime() const { |
272 | 0 | return process_->time(arguments_.exercise->lastDate()); |
273 | 0 | } |
274 | | |
275 | 0 | Time AnalyticHolderExtensibleOptionEngine::secondExpiryTime() const { |
276 | 0 | return process_->time(arguments_.secondExpiryDate); |
277 | 0 | } |
278 | | |
279 | 0 | Volatility AnalyticHolderExtensibleOptionEngine::volatility() const { |
280 | 0 | return process_->blackVolatility()->blackVol(firstExpiryTime(), strike()); |
281 | 0 | } |
282 | 0 | Rate AnalyticHolderExtensibleOptionEngine::riskFreeRate() const { |
283 | 0 | return process_->riskFreeRate()->zeroRate(firstExpiryTime(), Continuous, |
284 | 0 | NoFrequency); |
285 | 0 | } |
286 | 0 | Rate AnalyticHolderExtensibleOptionEngine::dividendYield() const { |
287 | 0 | return process_->dividendYield()->zeroRate(firstExpiryTime(), |
288 | 0 | Continuous, NoFrequency); |
289 | 0 | } |
290 | | |
291 | 0 | DiscountFactor AnalyticHolderExtensibleOptionEngine::dividendDiscount(Time t) const { |
292 | 0 | return process_->dividendYield()->discount(t); |
293 | 0 | } |
294 | | |
295 | 0 | DiscountFactor AnalyticHolderExtensibleOptionEngine::riskFreeDiscount(Time t) const { |
296 | 0 | return process_->riskFreeRate()->discount(t); |
297 | 0 | } |
298 | | |
299 | 0 | Real AnalyticHolderExtensibleOptionEngine::y1(Option::Type type) const { |
300 | 0 | Real S = process_->x0(); |
301 | 0 | Real I2 = (type == Option::Call) ? I2Call() : I2Put(); |
302 | |
|
303 | 0 | Real b = riskFreeRate() - dividendYield(); |
304 | 0 | Real vol = volatility(); |
305 | 0 | Time t1 = firstExpiryTime(); |
306 | |
|
307 | 0 | return (log(S / I2) + (b + pow(vol, 2) / 2)*t1) / (vol*sqrt(t1)); |
308 | 0 | } |
309 | | |
310 | 0 | Real AnalyticHolderExtensibleOptionEngine::y2(Option::Type type) const { |
311 | 0 | Real S = process_->x0(); |
312 | 0 | Real I1 = (type == Option::Call) ? I1Call() : I1Put(); |
313 | |
|
314 | 0 | Real b = riskFreeRate() - dividendYield(); |
315 | 0 | Real vol = volatility(); |
316 | 0 | Time t1 = firstExpiryTime(); |
317 | |
|
318 | 0 | return (log(S / I1) + (b + pow(vol, 2) / 2)*t1) / (vol*sqrt(t1)); |
319 | 0 | } |
320 | | |
321 | 0 | Real AnalyticHolderExtensibleOptionEngine::z1() const { |
322 | 0 | Real S = process_->x0(); |
323 | 0 | Real X2 = arguments_.secondStrike; |
324 | 0 | Real b = riskFreeRate() - dividendYield(); |
325 | 0 | Real vol = volatility(); |
326 | 0 | Time T2 = secondExpiryTime(); |
327 | |
|
328 | 0 | return (log(S / X2) + (b + pow(vol, 2) / 2)*T2) / (vol*sqrt(T2)); |
329 | 0 | } |
330 | | |
331 | 0 | Real AnalyticHolderExtensibleOptionEngine::z2() const { |
332 | 0 | Real S = process_->x0(); |
333 | 0 | Real X1 = strike(); |
334 | |
|
335 | 0 | Real b = riskFreeRate() - dividendYield(); |
336 | 0 | Real vol = volatility(); |
337 | 0 | Time t1 = firstExpiryTime(); |
338 | |
|
339 | 0 | return (log(S / X1) + (b + pow(vol, 2) / 2)*t1) / (vol*sqrt(t1)); |
340 | 0 | } |
341 | | |
342 | | } |