/src/quantlib/ql/pricingengines/vanilla/juquadraticengine.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2004 Neil Firth |
5 | | Copyright (C) 2007 StatPro Italia srl |
6 | | Copyright (C) 2013 Fabien Le Floc'h |
7 | | |
8 | | This file is part of QuantLib, a free-software/open-source library |
9 | | for financial quantitative analysts and developers - http://quantlib.org/ |
10 | | |
11 | | QuantLib is free software: you can redistribute it and/or modify it |
12 | | under the terms of the QuantLib license. You should have received a |
13 | | copy of the license along with this program; if not, please email |
14 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
15 | | <http://quantlib.org/license.shtml>. |
16 | | |
17 | | This program is distributed in the hope that it will be useful, but WITHOUT |
18 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
20 | | */ |
21 | | |
22 | | #include <ql/exercise.hpp> |
23 | | #include <ql/math/distributions/normaldistribution.hpp> |
24 | | #include <ql/pricingengines/blackcalculator.hpp> |
25 | | #include <ql/pricingengines/blackformula.hpp> |
26 | | #include <ql/pricingengines/vanilla/baroneadesiwhaleyengine.hpp> |
27 | | #include <ql/pricingengines/vanilla/juquadraticengine.hpp> |
28 | | #include <utility> |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | /* An Approximate Formula for Pricing American Options |
33 | | Journal of Derivatives Winter 1999 |
34 | | Ju, N. |
35 | | */ |
36 | | |
37 | | |
38 | | JuQuadraticApproximationEngine::JuQuadraticApproximationEngine( |
39 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process) |
40 | 0 | : process_(std::move(process)) { |
41 | 0 | registerWith(process_); |
42 | 0 | } |
43 | | |
44 | 0 | void JuQuadraticApproximationEngine::calculate() const { |
45 | |
|
46 | 0 | QL_REQUIRE(arguments_.exercise->type() == Exercise::American, |
47 | 0 | "not an American Option"); |
48 | | |
49 | 0 | ext::shared_ptr<AmericanExercise> ex = |
50 | 0 | ext::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise); |
51 | 0 | QL_REQUIRE(ex, "non-American exercise given"); |
52 | 0 | QL_REQUIRE(!ex->payoffAtExpiry(), |
53 | 0 | "payoff at expiry not handled"); |
54 | | |
55 | 0 | ext::shared_ptr<StrikedTypePayoff> payoff = |
56 | 0 | ext::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff); |
57 | 0 | QL_REQUIRE(payoff, "non-striked payoff given"); |
58 | | |
59 | 0 | Real variance = process_->blackVolatility()->blackVariance( |
60 | 0 | ex->lastDate(), payoff->strike()); |
61 | 0 | DiscountFactor dividendDiscount = process_->dividendYield()->discount( |
62 | 0 | ex->lastDate()); |
63 | 0 | DiscountFactor riskFreeDiscount = process_->riskFreeRate()->discount( |
64 | 0 | ex->lastDate()); |
65 | 0 | Real spot = process_->stateVariable()->value(); |
66 | 0 | QL_REQUIRE(spot > 0.0, "negative or null underlying given"); |
67 | 0 | Real forwardPrice = spot * dividendDiscount / riskFreeDiscount; |
68 | 0 | BlackCalculator black(payoff, forwardPrice, |
69 | 0 | std::sqrt(variance), riskFreeDiscount); |
70 | |
|
71 | 0 | if (dividendDiscount>=1.0 && payoff->optionType()==Option::Call) { |
72 | | // early exercise never optimal |
73 | 0 | results_.value = black.value(); |
74 | 0 | results_.delta = black.delta(spot); |
75 | 0 | results_.deltaForward = black.deltaForward(); |
76 | 0 | results_.elasticity = black.elasticity(spot); |
77 | 0 | results_.gamma = black.gamma(spot); |
78 | |
|
79 | 0 | DayCounter rfdc = process_->riskFreeRate()->dayCounter(); |
80 | 0 | DayCounter divdc = process_->dividendYield()->dayCounter(); |
81 | 0 | DayCounter voldc = process_->blackVolatility()->dayCounter(); |
82 | 0 | Time t = |
83 | 0 | rfdc.yearFraction(process_->riskFreeRate()->referenceDate(), |
84 | 0 | arguments_.exercise->lastDate()); |
85 | 0 | results_.rho = black.rho(t); |
86 | |
|
87 | 0 | t = divdc.yearFraction(process_->dividendYield()->referenceDate(), |
88 | 0 | arguments_.exercise->lastDate()); |
89 | 0 | results_.dividendRho = black.dividendRho(t); |
90 | |
|
91 | 0 | t = voldc.yearFraction(process_->blackVolatility()->referenceDate(), |
92 | 0 | arguments_.exercise->lastDate()); |
93 | 0 | results_.vega = black.vega(t); |
94 | 0 | results_.theta = black.theta(spot, t); |
95 | 0 | results_.thetaPerDay = black.thetaPerDay(spot, t); |
96 | |
|
97 | 0 | results_.strikeSensitivity = black.strikeSensitivity(); |
98 | 0 | results_.itmCashProbability = black.itmCashProbability(); |
99 | 0 | } else { |
100 | | // early exercise can be optimal |
101 | 0 | CumulativeNormalDistribution cumNormalDist; |
102 | 0 | NormalDistribution normalDist; |
103 | |
|
104 | 0 | Real tolerance = 1e-6; |
105 | 0 | Real Sk = BaroneAdesiWhaleyApproximationEngine::criticalPrice( |
106 | 0 | payoff, riskFreeDiscount, dividendDiscount, variance, |
107 | 0 | tolerance); |
108 | |
|
109 | 0 | Real forwardSk = Sk * dividendDiscount / riskFreeDiscount; |
110 | |
|
111 | 0 | Real alpha = -2.0*std::log(riskFreeDiscount)/(variance); |
112 | 0 | Real beta = 2.0*std::log(dividendDiscount/riskFreeDiscount)/ |
113 | 0 | (variance); |
114 | 0 | Real h = 1 - riskFreeDiscount; |
115 | 0 | Real phi; |
116 | 0 | switch (payoff->optionType()) { |
117 | 0 | case Option::Call: |
118 | 0 | phi = 1; |
119 | 0 | break; |
120 | 0 | case Option::Put: |
121 | 0 | phi = -1; |
122 | 0 | break; |
123 | 0 | default: |
124 | 0 | QL_FAIL("unknown option type"); |
125 | 0 | } |
126 | | //it can throw: to be fixed |
127 | 0 | Real temp_root = std::sqrt ((beta-1)*(beta-1) + (4*alpha)/h); |
128 | 0 | Real lambda = (-(beta-1) + phi * temp_root) / 2; |
129 | 0 | Real lambda_prime = - phi * alpha / (h*h * temp_root); |
130 | |
|
131 | 0 | Real black_Sk = blackFormula(payoff->optionType(), payoff->strike(), |
132 | 0 | forwardSk, std::sqrt(variance)) * riskFreeDiscount; |
133 | 0 | Real hA = phi * (Sk - payoff->strike()) - black_Sk; |
134 | |
|
135 | 0 | Real d1_Sk = (std::log(forwardSk/payoff->strike()) + 0.5*variance) |
136 | 0 | /std::sqrt(variance); |
137 | 0 | Real d2_Sk = d1_Sk - std::sqrt(variance); |
138 | 0 | Real part1 = forwardSk * normalDist(d1_Sk) / |
139 | 0 | (alpha * std::sqrt(variance)); |
140 | 0 | Real part2 = - phi * forwardSk * cumNormalDist(phi * d1_Sk) * |
141 | 0 | std::log(dividendDiscount) / std::log(riskFreeDiscount); |
142 | 0 | Real part3 = + phi * payoff->strike() * cumNormalDist(phi * d2_Sk); |
143 | 0 | Real V_E_h = part1 + part2 + part3; |
144 | |
|
145 | 0 | Real b = (1-h) * alpha * lambda_prime / (2*(2*lambda + beta - 1)); |
146 | 0 | Real c = - ((1 - h) * alpha / (2 * lambda + beta - 1)) * |
147 | 0 | (V_E_h / (hA) + 1 / h + lambda_prime / (2*lambda + beta - 1)); |
148 | 0 | Real temp_spot_ratio = std::log(spot / Sk); |
149 | 0 | Real chi = temp_spot_ratio * (b * temp_spot_ratio + c); |
150 | |
|
151 | 0 | if (phi*(Sk-spot) > 0) { |
152 | 0 | results_.value = black.value() + |
153 | 0 | hA * std::pow((spot/Sk), lambda) / (1 - chi); |
154 | 0 | Real temp_chi_prime = (2 * b / spot) * std::log(spot/Sk); |
155 | 0 | Real chi_prime = temp_chi_prime + c / spot; |
156 | 0 | Real chi_double_prime = 2*b/(spot*spot) |
157 | 0 | - temp_chi_prime / spot - c / (spot*spot); |
158 | 0 | Real d1_S = (std::log(forwardPrice/payoff->strike()) + 0.5*variance) |
159 | 0 | / std::sqrt(variance); |
160 | | //There is a typo in the original paper from Ju-Zhong |
161 | | //the first term is the Black-Scholes delta/gamma. |
162 | 0 | results_.delta = phi * dividendDiscount * cumNormalDist (phi * d1_S) |
163 | 0 | + (lambda / (spot * (1 - chi)) + chi_prime / ((1 - chi)*(1 - chi))) * |
164 | 0 | (phi * (Sk - payoff->strike()) - black_Sk) * std::pow((spot/Sk), lambda); |
165 | |
|
166 | 0 | results_.gamma = dividendDiscount * normalDist (phi*d1_S) |
167 | 0 | / (spot * std::sqrt(variance)) |
168 | 0 | + (2 * lambda * chi_prime / (spot * (1 - chi) * (1 - chi)) |
169 | 0 | + 2 * chi_prime * chi_prime / ((1 - chi) * (1 - chi) * (1 - chi)) |
170 | 0 | + chi_double_prime / ((1 - chi) * (1 - chi)) |
171 | 0 | + lambda * (lambda - 1) / (spot * spot * (1 - chi))) |
172 | 0 | * (phi * (Sk - payoff->strike()) - black_Sk) |
173 | 0 | * std::pow((spot/Sk), lambda); |
174 | 0 | } else { |
175 | 0 | results_.value = phi * (spot - payoff->strike()); |
176 | 0 | results_.delta = phi; |
177 | 0 | results_.gamma = 0; |
178 | 0 | } |
179 | |
|
180 | 0 | } // end of "early exercise can be optimal" |
181 | 0 | } |
182 | | |
183 | | } |