/src/quantlib/ql/processes/stochasticprocessarray.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2005 Klaus Spanderen |
5 | | Copyright (C) 2005 StatPro Italia srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <http://quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | #include <ql/processes/stochasticprocessarray.hpp> |
22 | | #include <ql/math/matrixutilities/pseudosqrt.hpp> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | StochasticProcessArray::StochasticProcessArray( |
27 | | const std::vector<ext::shared_ptr<StochasticProcess1D> >& processes, |
28 | | const Matrix& correlation) |
29 | 0 | : processes_(processes), |
30 | 0 | sqrtCorrelation_(pseudoSqrt(correlation,SalvagingAlgorithm::Spectral)) { |
31 | |
|
32 | 0 | QL_REQUIRE(!processes.empty(), "no processes given"); |
33 | 0 | QL_REQUIRE(correlation.rows() == processes.size(), |
34 | 0 | "mismatch between number of processes " |
35 | 0 | "and size of correlation matrix"); |
36 | 0 | for (auto& process : processes_) { |
37 | 0 | QL_REQUIRE(process, "null 1-D stochastic process"); |
38 | 0 | registerWith(process); |
39 | 0 | } |
40 | 0 | } |
41 | | |
42 | 0 | Size StochasticProcessArray::size() const { |
43 | 0 | return processes_.size(); |
44 | 0 | } |
45 | | |
46 | 0 | Array StochasticProcessArray::initialValues() const { |
47 | 0 | Array tmp(size()); |
48 | 0 | for (Size i=0; i<size(); ++i) |
49 | 0 | tmp[i] = processes_[i]->x0(); |
50 | 0 | return tmp; |
51 | 0 | } |
52 | | |
53 | | Array StochasticProcessArray::drift(Time t, |
54 | 0 | const Array& x) const { |
55 | 0 | Array tmp(size()); |
56 | 0 | for (Size i=0; i<size(); ++i) |
57 | 0 | tmp[i] = processes_[i]->drift(t, x[i]); |
58 | 0 | return tmp; |
59 | 0 | } |
60 | | |
61 | | Matrix StochasticProcessArray::diffusion(Time t, |
62 | 0 | const Array& x) const { |
63 | 0 | Matrix tmp = sqrtCorrelation_; |
64 | 0 | for (Size i=0; i<size(); ++i) { |
65 | 0 | Real sigma = processes_[i]->diffusion(t, x[i]); |
66 | 0 | std::transform(tmp.row_begin(i), tmp.row_end(i), |
67 | 0 | tmp.row_begin(i), |
68 | 0 | [=](Real x) -> Real { return x * sigma; }); |
69 | 0 | } |
70 | 0 | return tmp; |
71 | 0 | } |
72 | | |
73 | | Array StochasticProcessArray::expectation(Time t0, |
74 | | const Array& x0, |
75 | 0 | Time dt) const { |
76 | 0 | Array tmp(size()); |
77 | 0 | for (Size i=0; i<size(); ++i) |
78 | 0 | tmp[i] = processes_[i]->expectation(t0, x0[i], dt); |
79 | 0 | return tmp; |
80 | 0 | } |
81 | | |
82 | | Matrix StochasticProcessArray::stdDeviation(Time t0, |
83 | | const Array& x0, |
84 | 0 | Time dt) const { |
85 | 0 | Matrix tmp = sqrtCorrelation_; |
86 | 0 | for (Size i=0; i<size(); ++i) { |
87 | 0 | Real sigma = processes_[i]->stdDeviation(t0, x0[i], dt); |
88 | 0 | std::transform(tmp.row_begin(i), tmp.row_end(i), |
89 | 0 | tmp.row_begin(i), |
90 | 0 | [=](Real x) -> Real { return x * sigma; }); |
91 | 0 | } |
92 | 0 | return tmp; |
93 | 0 | } |
94 | | |
95 | | Matrix StochasticProcessArray::covariance(Time t0, |
96 | | const Array& x0, |
97 | 0 | Time dt) const { |
98 | 0 | Matrix tmp = stdDeviation(t0, x0, dt); |
99 | 0 | return tmp*transpose(tmp); |
100 | 0 | } |
101 | | |
102 | | Array StochasticProcessArray::evolve( |
103 | 0 | Time t0, const Array& x0, Time dt, const Array& dw) const { |
104 | 0 | const Array dz = sqrtCorrelation_ * dw; |
105 | |
|
106 | 0 | Array tmp(size()); |
107 | 0 | for (Size i=0; i<size(); ++i) |
108 | 0 | tmp[i] = processes_[i]->evolve(t0, x0[i], dt, dz[i]); |
109 | 0 | return tmp; |
110 | 0 | } |
111 | | |
112 | | Array StochasticProcessArray::apply(const Array& x0, |
113 | 0 | const Array& dx) const { |
114 | 0 | Array tmp(size()); |
115 | 0 | for (Size i=0; i<size(); ++i) |
116 | 0 | tmp[i] = processes_[i]->apply(x0[i],dx[i]); |
117 | 0 | return tmp; |
118 | 0 | } |
119 | | |
120 | 0 | Time StochasticProcessArray::time(const Date& d) const { |
121 | 0 | return processes_[0]->time(d); |
122 | 0 | } |
123 | | |
124 | | const ext::shared_ptr<StochasticProcess1D>& |
125 | 0 | StochasticProcessArray::process(Size i) const { |
126 | 0 | return processes_[i]; |
127 | 0 | } |
128 | | |
129 | 0 | Matrix StochasticProcessArray::correlation() const { |
130 | 0 | return sqrtCorrelation_ * transpose(sqrtCorrelation_); |
131 | 0 | } |
132 | | |
133 | | } |