/src/quantlib/ql/termstructures/volatility/equityfx/hestonblackvolsurface.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2015 Johannes Göttker-Schnetmann |
5 | | Copyright (C) 2015 Klaus Spanderen |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <http://quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | /*! \file hestonblackvolsurface.hpp |
22 | | \brief Black volatility surface back by Heston model |
23 | | */ |
24 | | |
25 | | #include <ql/math/functional.hpp> |
26 | | #include <ql/math/solvers1d/brent.hpp> |
27 | | #include <ql/pricingengines/blackformula.hpp> |
28 | | #include <ql/termstructures/volatility/equityfx/hestonblackvolsurface.hpp> |
29 | | #include <ql/time/calendars/nullcalendar.hpp> |
30 | | #include <limits> |
31 | | #include <utility> |
32 | | |
33 | | namespace QuantLib { |
34 | | |
35 | | namespace { |
36 | | Real blackValue(Option::Type optionType, Real strike, |
37 | | Real forward, Real maturity, |
38 | 0 | Volatility vol, Real discount, Real npv) { |
39 | |
|
40 | 0 | return blackFormula(optionType, strike, forward, |
41 | 0 | std::max(0.0, vol)*std::sqrt(maturity), |
42 | 0 | discount)-npv; |
43 | 0 | } |
44 | | } |
45 | | |
46 | | HestonBlackVolSurface::HestonBlackVolSurface( |
47 | | const Handle<HestonModel>& hestonModel, |
48 | | const AnalyticHestonEngine::ComplexLogFormula cpxLogFormula, |
49 | | AnalyticHestonEngine::Integration integration) |
50 | 0 | : BlackVolTermStructure(hestonModel->process()->riskFreeRate()->referenceDate(), |
51 | 0 | NullCalendar(), |
52 | 0 | Following, |
53 | 0 | hestonModel->process()->riskFreeRate()->dayCounter()), |
54 | 0 | hestonModel_(hestonModel), cpxLogFormula_(cpxLogFormula), |
55 | 0 | integration_(std::move(integration)) { |
56 | 0 | registerWith(hestonModel_); |
57 | 0 | } Unexecuted instantiation: QuantLib::HestonBlackVolSurface::HestonBlackVolSurface(QuantLib::Handle<QuantLib::HestonModel> const&, QuantLib::AnalyticHestonEngine::ComplexLogFormula, QuantLib::AnalyticHestonEngine::Integration) Unexecuted instantiation: QuantLib::HestonBlackVolSurface::HestonBlackVolSurface(QuantLib::Handle<QuantLib::HestonModel> const&, QuantLib::AnalyticHestonEngine::ComplexLogFormula, QuantLib::AnalyticHestonEngine::Integration) |
58 | | |
59 | 0 | DayCounter HestonBlackVolSurface::dayCounter() const { |
60 | 0 | return hestonModel_->process()->riskFreeRate()->dayCounter(); |
61 | 0 | } |
62 | 0 | Date HestonBlackVolSurface::maxDate() const { |
63 | 0 | return Date::maxDate(); |
64 | 0 | } |
65 | 0 | Real HestonBlackVolSurface::minStrike() const { |
66 | 0 | return 0.0; |
67 | 0 | } |
68 | 0 | Real HestonBlackVolSurface::maxStrike() const { |
69 | 0 | return std::numeric_limits<Real>::max(); |
70 | 0 | } |
71 | | |
72 | 0 | Real HestonBlackVolSurface::blackVarianceImpl(Time t, Real strike) const { |
73 | 0 | return squared(blackVolImpl(t, strike))*t; |
74 | 0 | } |
75 | | |
76 | 0 | Volatility HestonBlackVolSurface::blackVolImpl(Time t, Real strike) const { |
77 | 0 | AnalyticHestonEngine hestonEngine( |
78 | 0 | hestonModel_.currentLink(), cpxLogFormula_, integration_); |
79 | |
|
80 | 0 | const ext::shared_ptr<HestonProcess>& process = hestonModel_->process(); |
81 | |
|
82 | 0 | const DiscountFactor df = process->riskFreeRate()->discount(t, true); |
83 | |
|
84 | 0 | const Real fwd = process->s0()->value() |
85 | 0 | * process->dividendYield()->discount(t, true) / df; |
86 | |
|
87 | 0 | const ext::shared_ptr<PlainVanillaPayoff> payoff = |
88 | 0 | ext::make_shared<PlainVanillaPayoff>( |
89 | 0 | fwd > strike ? Option::Put : Option::Call, strike); |
90 | |
|
91 | 0 | const Real npv = hestonEngine.priceVanillaPayoff(payoff, t); |
92 | |
|
93 | 0 | const Real theta = hestonModel_->theta(); |
94 | 0 | if (npv <= 0.0) return std::sqrt(theta); |
95 | | |
96 | 0 | Brent solver; |
97 | 0 | solver.setMaxEvaluations(10000); |
98 | 0 | const Volatility guess = std::sqrt(theta); |
99 | 0 | constexpr double accuracy = std::numeric_limits<double>::epsilon(); |
100 | |
|
101 | 0 | return solver.solve( |
102 | 0 | [&](Volatility _v) { |
103 | 0 | return blackValue( |
104 | 0 | payoff->optionType(), strike, fwd, t, _v, df, npv); |
105 | 0 | }, |
106 | 0 | accuracy, guess, 0.01 |
107 | 0 | ); |
108 | 0 | } |
109 | | } |