/src/quantlib/ql/experimental/math/fireflyalgorithm.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2015 Andres Hernandez |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file fireflyalgorithm.hpp |
21 | | \brief Implementation based on: |
22 | | Yang, Xin-She (2009) Firefly Algorithm, Levy Flights and Global |
23 | | Optimization. Research and Development in Intelligent Systems XXVI, pp 209-218. |
24 | | http://arxiv.org/pdf/1003.1464.pdf |
25 | | */ |
26 | | |
27 | | #ifndef quantlib_optimization_fireflyalgorithm_hpp |
28 | | #define quantlib_optimization_fireflyalgorithm_hpp |
29 | | |
30 | | #include <ql/math/optimization/problem.hpp> |
31 | | #include <ql/math/optimization/constraint.hpp> |
32 | | #include <ql/experimental/math/isotropicrandomwalk.hpp> |
33 | | #include <ql/experimental/math/levyflightdistribution.hpp> |
34 | | #include <ql/math/randomnumbers/mt19937uniformrng.hpp> |
35 | | #include <ql/math/randomnumbers/seedgenerator.hpp> |
36 | | |
37 | | #include <cmath> |
38 | | #include <random> |
39 | | |
40 | | namespace QuantLib { |
41 | | |
42 | | /*! The main process is as follows: |
43 | | M individuals are used to explore the N-dimensional parameter space: |
44 | | \f$ X_{i}^k = (X_{i, 1}^k, X_{i, 2}^k, \ldots, X_{i, N}^k) \f$ is the kth-iteration |
45 | | for the ith-individual. X is updated via the rule |
46 | | \f[ |
47 | | X_{i, j}^{k+1} = X_{i, j}^k + I(X^k)_{i,j} + RandomWalk_{i,j}^k |
48 | | \f] |
49 | | |
50 | | The intensity function I(X) should be monotonic |
51 | | The optimization stops either because the number of iterations has been reached |
52 | | or because the stationary function value limit has been reached. |
53 | | |
54 | | The current implementation extends the normal Firefly Algorithm with a |
55 | | differential evolution (DE) optimizer according to: |
56 | | Afnizanfaizal Abdullah, et al. "A New Hybrid Firefly Algorithm for Complex and |
57 | | Nonlinear Problem". Volume 151 of the series Advances in Intelligent and Soft |
58 | | Computing pp 673-680, 2012. |
59 | | http://link.springer.com/chapter/10.1007%2F978-3-642-28765-7_81 |
60 | | |
61 | | In effect this implementation provides a fully fledged DE global optimizer |
62 | | as well. The Firefly Algorithm was easy to combine with DE because it already |
63 | | contained a step where the current solutions are sorted. The population is |
64 | | then divided into two subpopulations based on their order. The subpopulation |
65 | | with the best results are updated via the firefly algorithm. The worse |
66 | | subpopulation is updated via the DE operator: |
67 | | \f[ |
68 | | Y^{k+1} = X_{best}^k + F(X_{r1}^k - X_{r2}^k) |
69 | | \f] |
70 | | and |
71 | | \f[ |
72 | | X_{i,j}^{k+1} = Y_{i,j}^{k+1}\ \text{if} R_{i,j} <= C |
73 | | \f] |
74 | | \f[ |
75 | | X_{i,j}^{k+1} = X_{i,j}^{k+1}\ \text{otherwise} |
76 | | \f] |
77 | | where C is the crossover constant, and R is a random uniformly distributed |
78 | | number. |
79 | | */ |
80 | | class FireflyAlgorithm : public OptimizationMethod { |
81 | | public: |
82 | | class RandomWalk; |
83 | | class Intensity; |
84 | | FireflyAlgorithm(Size M, |
85 | | ext::shared_ptr<Intensity> intensity, |
86 | | ext::shared_ptr<RandomWalk> randomWalk, |
87 | | Size Mde = 0, |
88 | | Real mutationFactor = 1.0, |
89 | | Real crossoverFactor = 0.5, |
90 | | unsigned long seed = SeedGenerator::instance().get()); |
91 | | void startState(Problem &P, const EndCriteria &endCriteria); |
92 | | EndCriteria::Type minimize(Problem& P, const EndCriteria& endCriteria) override; |
93 | | |
94 | | protected: |
95 | | std::vector<Array> x_, xI_, xRW_; |
96 | | std::vector<std::pair<Real, Size> > values_; |
97 | | Array lX_, uX_; |
98 | | Real mutation_, crossover_; |
99 | | Size M_, N_, Mde_, Mfa_; |
100 | | ext::shared_ptr<Intensity> intensity_; |
101 | | ext::shared_ptr<RandomWalk> randomWalk_; |
102 | | std::mt19937 generator_; |
103 | | std::uniform_int_distribution<QuantLib::Size> distribution_; |
104 | | MersenneTwisterUniformRng rng_; |
105 | | }; |
106 | | |
107 | | //! Base intensity class |
108 | | /*! Derived classes need to implement only intensityImpl |
109 | | */ |
110 | | class FireflyAlgorithm::Intensity { |
111 | | friend class FireflyAlgorithm; |
112 | | public: |
113 | | virtual ~Intensity() = default; |
114 | | //! find brightest firefly for each firefly |
115 | | void findBrightest(); |
116 | | protected: |
117 | | Size Mfa_, N_; |
118 | | const std::vector<Array> *x_; |
119 | | const std::vector<std::pair<Real, Size> > *values_; |
120 | | std::vector<Array> *xI_; |
121 | | |
122 | | virtual Real intensityImpl(Real valueX, Real valueY, Real distance) = 0; |
123 | 0 | Real distance(const Array& x, const Array& y) const { |
124 | 0 | Real d = 0.0; |
125 | 0 | for (Size i = 0; i < N_; i++) { |
126 | 0 | Real diff = x[i] - y[i]; |
127 | 0 | d += diff*diff; |
128 | 0 | } |
129 | 0 | return d; |
130 | 0 | } |
131 | | |
132 | | private: |
133 | 0 | void init(FireflyAlgorithm *fa) { |
134 | 0 | x_ = &fa->x_; |
135 | 0 | xI_ = &fa->xI_; |
136 | 0 | values_ = &fa->values_; |
137 | 0 | Mfa_ = fa->Mfa_; |
138 | 0 | N_ = fa->N_; |
139 | 0 | } |
140 | | }; |
141 | | |
142 | | //! Exponential Intensity |
143 | | /* Exponentially decreasing intensity |
144 | | */ |
145 | | class ExponentialIntensity : public FireflyAlgorithm::Intensity { |
146 | | public: |
147 | | ExponentialIntensity(Real beta0, Real betaMin, Real gamma) |
148 | 0 | : beta0_(beta0), betaMin_(betaMin), gamma_(gamma) {} |
149 | | protected: |
150 | 0 | Real intensityImpl(Real valueX, Real valueY, Real d) override { |
151 | 0 | return (beta0_ - betaMin_) * std::exp(-gamma_ * d) + betaMin_; |
152 | 0 | } |
153 | | Real beta0_, betaMin_, gamma_; |
154 | | }; |
155 | | |
156 | | //! Inverse Square Intensity |
157 | | /* Inverse law square |
158 | | */ |
159 | | class InverseLawSquareIntensity : public FireflyAlgorithm::Intensity { |
160 | | public: |
161 | | InverseLawSquareIntensity(Real beta0, Real betaMin) |
162 | 0 | : beta0_(beta0), betaMin_(betaMin) {} |
163 | | protected: |
164 | 0 | Real intensityImpl(Real valueX, Real valueY, Real d) override { |
165 | 0 | return (beta0_ - betaMin_) / (d + QL_EPSILON) + betaMin_; |
166 | 0 | } |
167 | | Real beta0_, betaMin_; |
168 | | }; |
169 | | |
170 | | //! Base Random Walk class |
171 | | /*! Derived classes need to implement only walkImpl |
172 | | */ |
173 | | class FireflyAlgorithm::RandomWalk { |
174 | | friend class FireflyAlgorithm; |
175 | | public: |
176 | | virtual ~RandomWalk() = default; |
177 | | //! perform random walk |
178 | 0 | void walk() { |
179 | 0 | for (Size i = 0; i < Mfa_; i++) { |
180 | 0 | walkImpl((*xRW_)[(*values_)[i].second]); |
181 | 0 | } |
182 | 0 | } |
183 | | protected: |
184 | | Size Mfa_, N_; |
185 | | const std::vector<Array> *x_; |
186 | | const std::vector<std::pair<Real, Size> > *values_; |
187 | | std::vector<Array> *xRW_; |
188 | | Array *lX_, *uX_; |
189 | | |
190 | | virtual void walkImpl(Array & xRW) = 0; |
191 | 0 | virtual void init(FireflyAlgorithm *fa) { |
192 | 0 | x_ = &fa->x_; |
193 | 0 | xRW_ = &fa->xRW_; |
194 | 0 | values_ = &fa->values_; |
195 | 0 | Mfa_ = fa->Mfa_; |
196 | 0 | N_ = fa->N_; |
197 | 0 | lX_ = &fa->lX_; |
198 | 0 | uX_ = &fa->uX_; |
199 | 0 | } |
200 | | }; |
201 | | |
202 | | //! Distribution Walk |
203 | | /* Random walk given by distribution template parameter. The |
204 | | distribution must be compatible with std::mt19937. |
205 | | */ |
206 | | template <class Distribution> |
207 | | class DistributionRandomWalk : public FireflyAlgorithm::RandomWalk { |
208 | | public: |
209 | | explicit DistributionRandomWalk(Distribution dist, |
210 | | Real delta = 0.9, |
211 | | unsigned long seed = SeedGenerator::instance().get()) |
212 | | : walkRandom_(std::mt19937(seed), std::move(dist), 1, Array(1, 1.0), seed), |
213 | | delta_(delta) {} |
214 | | protected: |
215 | 0 | void walkImpl(Array& xRW) override { |
216 | 0 | walkRandom_.nextReal(&xRW[0]); |
217 | 0 | xRW *= delta_; |
218 | 0 | } Unexecuted instantiation: QuantLib::DistributionRandomWalk<std::__1::normal_distribution<double> >::walkImpl(QuantLib::Array&) Unexecuted instantiation: QuantLib::DistributionRandomWalk<QuantLib::LevyFlightDistribution>::walkImpl(QuantLib::Array&) |
219 | 0 | void init(FireflyAlgorithm* fa) override { |
220 | 0 | FireflyAlgorithm::RandomWalk::init(fa); |
221 | 0 | walkRandom_.setDimension(N_, *lX_, *uX_); |
222 | 0 | } Unexecuted instantiation: QuantLib::DistributionRandomWalk<std::__1::normal_distribution<double> >::init(QuantLib::FireflyAlgorithm*) Unexecuted instantiation: QuantLib::DistributionRandomWalk<QuantLib::LevyFlightDistribution>::init(QuantLib::FireflyAlgorithm*) |
223 | | IsotropicRandomWalk<Distribution, std::mt19937> walkRandom_; |
224 | | Real delta_; |
225 | | }; |
226 | | |
227 | | //! Gaussian Walk |
228 | | /* Gaussian random walk |
229 | | */ |
230 | | class GaussianWalk : public DistributionRandomWalk<std::normal_distribution<QuantLib::Real>> { |
231 | | public: |
232 | | explicit GaussianWalk(Real sigma, |
233 | | Real delta = 0.9, |
234 | | unsigned long seed = SeedGenerator::instance().get()) |
235 | | : DistributionRandomWalk<std::normal_distribution<QuantLib::Real>>( |
236 | 0 | std::normal_distribution<QuantLib::Real>(0.0, sigma), delta, seed){} |
237 | | }; |
238 | | |
239 | | //! Levy Flight Random Walk |
240 | | /* Levy flight random walk |
241 | | */ |
242 | | class LevyFlightWalk : public DistributionRandomWalk<LevyFlightDistribution> { |
243 | | public: |
244 | | explicit LevyFlightWalk(Real alpha, |
245 | | Real xm = 0.5, |
246 | | Real delta = 0.9, |
247 | | unsigned long seed = SeedGenerator::instance().get()) |
248 | | : DistributionRandomWalk<LevyFlightDistribution>( |
249 | 0 | LevyFlightDistribution(xm, alpha), delta, seed) {} |
250 | | }; |
251 | | |
252 | | //! Decreasing Random Walk |
253 | | /* Gaussian random walk, but size of step decreases with each iteration step |
254 | | */ |
255 | | class DecreasingGaussianWalk : public GaussianWalk { |
256 | | public: |
257 | | explicit DecreasingGaussianWalk( |
258 | | Real sigma, |
259 | | Real delta = 0.9, |
260 | | unsigned long seed = SeedGenerator::instance().get()) |
261 | 0 | : GaussianWalk(sigma, delta, seed), delta0_(delta) {} |
262 | | protected: |
263 | 0 | void walkImpl(Array& xRW) override { |
264 | 0 | iteration_++; |
265 | 0 | if (iteration_ > Mfa_) { |
266 | 0 | //Every time all the fireflies have been processed |
267 | 0 | //multiply delta by itself |
268 | 0 | iteration_ = 0; |
269 | 0 | delta_ *= delta_; |
270 | 0 | } |
271 | 0 | GaussianWalk::walkImpl(xRW); |
272 | 0 | } |
273 | 0 | void init(FireflyAlgorithm* fa) override { |
274 | 0 | GaussianWalk::init(fa); |
275 | 0 | iteration_ = 0; |
276 | 0 | delta_ = delta0_; |
277 | 0 | } |
278 | | |
279 | | private: |
280 | | Real delta0_; |
281 | | Size iteration_; |
282 | | }; |
283 | | } |
284 | | |
285 | | #endif |