/src/quantlib/ql/math/optimization/differentialevolution.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2012 Ralph Schreyer |
5 | | Copyright (C) 2012 Mateusz Kapturski |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <http://quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | #include <ql/math/optimization/differentialevolution.hpp> |
22 | | #include <algorithm> |
23 | | #include <cmath> |
24 | | |
25 | | namespace QuantLib { |
26 | | |
27 | | namespace { |
28 | | |
29 | | struct sort_by_cost { |
30 | | bool operator()(const DifferentialEvolution::Candidate& left, |
31 | 0 | const DifferentialEvolution::Candidate& right) { |
32 | 0 | return left.cost < right.cost; |
33 | 0 | } |
34 | | }; |
35 | | |
36 | | template <class I> |
37 | | void randomize(I begin, I end, |
38 | 0 | const MersenneTwisterUniformRng& rng) { |
39 | 0 | Size n = static_cast<Size>(end-begin); |
40 | 0 | for (Size i=n-1; i>0; --i) { |
41 | 0 | std::swap(begin[i], begin[rng.nextInt32() % (i+1)]); |
42 | 0 | } |
43 | 0 | } Unexecuted instantiation: differentialevolution.cpp:void QuantLib::(anonymous namespace)::randomize<std::__1::__wrap_iter<QuantLib::DifferentialEvolution::Candidate*> >(std::__1::__wrap_iter<QuantLib::DifferentialEvolution::Candidate*>, std::__1::__wrap_iter<QuantLib::DifferentialEvolution::Candidate*>, QuantLib::MersenneTwisterUniformRng const&) Unexecuted instantiation: differentialevolution.cpp:void QuantLib::(anonymous namespace)::randomize<double*>(double*, double*, QuantLib::MersenneTwisterUniformRng const&) |
44 | | |
45 | | } |
46 | | |
47 | 0 | EndCriteria::Type DifferentialEvolution::minimize(Problem& p, const EndCriteria& endCriteria) { |
48 | 0 | EndCriteria::Type ecType; |
49 | 0 | p.reset(); |
50 | |
|
51 | 0 | if (configuration().upperBound.empty()) { |
52 | 0 | upperBound_ = p.constraint().upperBound(p.currentValue()); |
53 | 0 | } else { |
54 | 0 | QL_REQUIRE(configuration().upperBound.size() == p.currentValue().size(), |
55 | 0 | "wrong upper bound size in differential evolution configuration"); |
56 | 0 | upperBound_ = configuration().upperBound; |
57 | 0 | } |
58 | 0 | if (configuration().lowerBound.empty()) { |
59 | 0 | lowerBound_ = p.constraint().lowerBound(p.currentValue()); |
60 | 0 | } else { |
61 | 0 | QL_REQUIRE(configuration().lowerBound.size() == p.currentValue().size(), |
62 | 0 | "wrong lower bound size in differential evolution configuration"); |
63 | 0 | lowerBound_ = configuration().lowerBound; |
64 | 0 | } |
65 | 0 | currGenSizeWeights_ = |
66 | 0 | Array(configuration().populationMembers, configuration().stepsizeWeight); |
67 | 0 | currGenCrossover_ = Array(configuration().populationMembers, |
68 | 0 | configuration().crossoverProbability); |
69 | |
|
70 | 0 | std::vector<Candidate> population; |
71 | 0 | if (!configuration().initialPopulation.empty()) { |
72 | 0 | population.resize(configuration().initialPopulation.size()); |
73 | 0 | for (Size i = 0; i < population.size(); ++i) { |
74 | 0 | population[i].values = configuration().initialPopulation[i]; |
75 | 0 | QL_REQUIRE(population[i].values.size() == p.currentValue().size(), |
76 | 0 | "wrong values size in initial population"); |
77 | 0 | population[i].cost = p.costFunction().value(population[i].values); |
78 | 0 | } |
79 | 0 | } else { |
80 | 0 | population = std::vector<Candidate>(configuration().populationMembers, |
81 | 0 | Candidate(p.currentValue().size())); |
82 | 0 | fillInitialPopulation(population, p); |
83 | 0 | } |
84 | | |
85 | 0 | std::partial_sort(population.begin(), population.begin() + 1, population.end(), |
86 | 0 | sort_by_cost()); |
87 | 0 | bestMemberEver_ = population.front(); |
88 | 0 | Real fxOld = population.front().cost; |
89 | 0 | Size iteration = 0, stationaryPointIteration = 0; |
90 | | |
91 | | // main loop - calculate consecutive emerging populations |
92 | 0 | while (!endCriteria.checkMaxIterations(iteration++, ecType)) { |
93 | 0 | calculateNextGeneration(population, p); |
94 | 0 | std::partial_sort(population.begin(), population.begin() + 1, population.end(), |
95 | 0 | sort_by_cost()); |
96 | 0 | if (population.front().cost < bestMemberEver_.cost) |
97 | 0 | bestMemberEver_ = population.front(); |
98 | 0 | Real fxNew = population.front().cost; |
99 | 0 | if (endCriteria.checkStationaryFunctionValue(fxOld, fxNew, stationaryPointIteration, |
100 | 0 | ecType)) |
101 | 0 | break; |
102 | 0 | fxOld = fxNew; |
103 | 0 | }; |
104 | 0 | p.setCurrentValue(bestMemberEver_.values); |
105 | 0 | p.setFunctionValue(bestMemberEver_.cost); |
106 | 0 | return ecType; |
107 | 0 | } |
108 | | |
109 | | void DifferentialEvolution::calculateNextGeneration( |
110 | | std::vector<Candidate>& population, |
111 | 0 | Problem& p) const { |
112 | |
|
113 | 0 | std::vector<Candidate> mirrorPopulation; |
114 | 0 | std::vector<Candidate> oldPopulation = population; |
115 | |
|
116 | 0 | switch (configuration().strategy) { |
117 | | |
118 | 0 | case Rand1Standard: { |
119 | 0 | randomize(population.begin(), population.end(), rng_); |
120 | 0 | std::vector<Candidate> shuffledPop1 = population; |
121 | 0 | randomize(population.begin(), population.end(), rng_); |
122 | 0 | std::vector<Candidate> shuffledPop2 = population; |
123 | 0 | randomize(population.begin(), population.end(), rng_); |
124 | 0 | mirrorPopulation = shuffledPop1; |
125 | |
|
126 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
127 | 0 | population[popIter].values = population[popIter].values |
128 | 0 | + configuration().stepsizeWeight |
129 | 0 | * (shuffledPop1[popIter].values - shuffledPop2[popIter].values); |
130 | 0 | } |
131 | 0 | } |
132 | 0 | break; |
133 | | |
134 | 0 | case BestMemberWithJitter: { |
135 | 0 | randomize(population.begin(), population.end(), rng_); |
136 | 0 | std::vector<Candidate> shuffledPop1 = population; |
137 | 0 | randomize(population.begin(), population.end(), rng_); |
138 | 0 | Array jitter(population[0].values.size(), 0.0); |
139 | |
|
140 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
141 | 0 | for (Real& jitterIter : jitter) { |
142 | 0 | jitterIter = rng_.nextReal(); |
143 | 0 | } |
144 | 0 | population[popIter].values = bestMemberEver_.values |
145 | 0 | + (shuffledPop1[popIter].values - population[popIter].values) |
146 | 0 | * (0.0001 * jitter + configuration().stepsizeWeight); |
147 | 0 | } |
148 | 0 | mirrorPopulation = std::vector<Candidate>(population.size(), |
149 | 0 | bestMemberEver_); |
150 | 0 | } |
151 | 0 | break; |
152 | | |
153 | 0 | case CurrentToBest2Diffs: { |
154 | 0 | randomize(population.begin(), population.end(), rng_); |
155 | 0 | std::vector<Candidate> shuffledPop1 = population; |
156 | 0 | randomize(population.begin(), population.end(), rng_); |
157 | |
|
158 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
159 | 0 | population[popIter].values = oldPopulation[popIter].values |
160 | 0 | + configuration().stepsizeWeight |
161 | 0 | * (bestMemberEver_.values - oldPopulation[popIter].values) |
162 | 0 | + configuration().stepsizeWeight |
163 | 0 | * (population[popIter].values - shuffledPop1[popIter].values); |
164 | 0 | } |
165 | 0 | mirrorPopulation = shuffledPop1; |
166 | 0 | } |
167 | 0 | break; |
168 | | |
169 | 0 | case Rand1DiffWithPerVectorDither: { |
170 | 0 | randomize(population.begin(), population.end(), rng_); |
171 | 0 | std::vector<Candidate> shuffledPop1 = population; |
172 | 0 | randomize(population.begin(), population.end(), rng_); |
173 | 0 | std::vector<Candidate> shuffledPop2 = population; |
174 | 0 | randomize(population.begin(), population.end(), rng_); |
175 | 0 | mirrorPopulation = shuffledPop1; |
176 | 0 | Array FWeight = Array(population.front().values.size(), 0.0); |
177 | 0 | for (Real& fwIter : FWeight) |
178 | 0 | fwIter = (1.0 - configuration().stepsizeWeight) * rng_.nextReal() + |
179 | 0 | configuration().stepsizeWeight; |
180 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
181 | 0 | population[popIter].values = population[popIter].values |
182 | 0 | + FWeight * (shuffledPop1[popIter].values - shuffledPop2[popIter].values); |
183 | 0 | } |
184 | 0 | } |
185 | 0 | break; |
186 | | |
187 | 0 | case Rand1DiffWithDither: { |
188 | 0 | randomize(population.begin(), population.end(), rng_); |
189 | 0 | std::vector<Candidate> shuffledPop1 = population; |
190 | 0 | randomize(population.begin(), population.end(), rng_); |
191 | 0 | std::vector<Candidate> shuffledPop2 = population; |
192 | 0 | randomize(population.begin(), population.end(), rng_); |
193 | 0 | mirrorPopulation = shuffledPop1; |
194 | 0 | Real FWeight = (1.0 - configuration().stepsizeWeight) * rng_.nextReal() |
195 | 0 | + configuration().stepsizeWeight; |
196 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
197 | 0 | population[popIter].values = population[popIter].values |
198 | 0 | + FWeight * (shuffledPop1[popIter].values - shuffledPop2[popIter].values); |
199 | 0 | } |
200 | 0 | } |
201 | 0 | break; |
202 | | |
203 | 0 | case EitherOrWithOptimalRecombination: { |
204 | 0 | randomize(population.begin(), population.end(), rng_); |
205 | 0 | std::vector<Candidate> shuffledPop1 = population; |
206 | 0 | randomize(population.begin(), population.end(), rng_); |
207 | 0 | std::vector<Candidate> shuffledPop2 = population; |
208 | 0 | randomize(population.begin(), population.end(), rng_); |
209 | 0 | mirrorPopulation = shuffledPop1; |
210 | 0 | Real probFWeight = 0.5; |
211 | 0 | if (rng_.nextReal() < probFWeight) { |
212 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
213 | 0 | population[popIter].values = oldPopulation[popIter].values |
214 | 0 | + configuration().stepsizeWeight |
215 | 0 | * (shuffledPop1[popIter].values - shuffledPop2[popIter].values); |
216 | 0 | } |
217 | 0 | } else { |
218 | 0 | Real K = 0.5 * (configuration().stepsizeWeight + 1); // invariant with respect to probFWeight used |
219 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
220 | 0 | population[popIter].values = oldPopulation[popIter].values |
221 | 0 | + K |
222 | 0 | * (shuffledPop1[popIter].values - shuffledPop2[popIter].values |
223 | 0 | - 2.0 * population[popIter].values); |
224 | 0 | } |
225 | 0 | } |
226 | 0 | } |
227 | 0 | break; |
228 | | |
229 | 0 | case Rand1SelfadaptiveWithRotation: { |
230 | 0 | randomize(population.begin(), population.end(), rng_); |
231 | 0 | std::vector<Candidate> shuffledPop1 = population; |
232 | 0 | randomize(population.begin(), population.end(), rng_); |
233 | 0 | std::vector<Candidate> shuffledPop2 = population; |
234 | 0 | randomize(population.begin(), population.end(), rng_); |
235 | 0 | mirrorPopulation = shuffledPop1; |
236 | |
|
237 | 0 | adaptSizeWeights(); |
238 | |
|
239 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
240 | 0 | if (rng_.nextReal() < 0.1){ |
241 | 0 | population[popIter].values = rotateArray(bestMemberEver_.values); |
242 | 0 | }else { |
243 | 0 | population[popIter].values = bestMemberEver_.values |
244 | 0 | + currGenSizeWeights_[popIter] |
245 | 0 | * (shuffledPop1[popIter].values - shuffledPop2[popIter].values); |
246 | 0 | } |
247 | 0 | } |
248 | 0 | } |
249 | 0 | break; |
250 | | |
251 | 0 | default: |
252 | 0 | QL_FAIL("Unknown strategy (" |
253 | 0 | << Integer(configuration().strategy) << ")"); |
254 | 0 | } |
255 | | // in order to avoid unnecessary copying we use the same population object for mutants |
256 | 0 | crossover(oldPopulation, population, population, mirrorPopulation, p); |
257 | 0 | } |
258 | | |
259 | | void DifferentialEvolution::crossover( |
260 | | const std::vector<Candidate>& oldPopulation, |
261 | | std::vector<Candidate>& population, |
262 | | const std::vector<Candidate>& mutantPopulation, |
263 | | const std::vector<Candidate>& mirrorPopulation, |
264 | 0 | Problem& p) const { |
265 | |
|
266 | 0 | if (configuration().crossoverIsAdaptive) { |
267 | 0 | adaptCrossover(); |
268 | 0 | } |
269 | |
|
270 | 0 | Array mutationProbabilities = getMutationProbabilities(population); |
271 | |
|
272 | 0 | std::vector<Array> crossoverMask(population.size(), |
273 | 0 | Array(population.front().values.size(), 1.0)); |
274 | 0 | std::vector<Array> invCrossoverMask = crossoverMask; |
275 | 0 | getCrossoverMask(crossoverMask, invCrossoverMask, mutationProbabilities); |
276 | | |
277 | | // crossover of the old and mutant population |
278 | 0 | for (Size popIter = 0; popIter < population.size(); popIter++) { |
279 | 0 | population[popIter].values = oldPopulation[popIter].values * invCrossoverMask[popIter] |
280 | 0 | + mutantPopulation[popIter].values * crossoverMask[popIter]; |
281 | | // immediately apply bounds if specified |
282 | 0 | if (configuration().applyBounds) { |
283 | 0 | for (Size memIter = 0; memIter < population[popIter].values.size(); memIter++) { |
284 | 0 | if (population[popIter].values[memIter] > upperBound_[memIter]) |
285 | 0 | population[popIter].values[memIter] = upperBound_[memIter] |
286 | 0 | + rng_.nextReal() |
287 | 0 | * (mirrorPopulation[popIter].values[memIter] |
288 | 0 | - upperBound_[memIter]); |
289 | 0 | if (population[popIter].values[memIter] < lowerBound_[memIter]) |
290 | 0 | population[popIter].values[memIter] = lowerBound_[memIter] |
291 | 0 | + rng_.nextReal() |
292 | 0 | * (mirrorPopulation[popIter].values[memIter] |
293 | 0 | - lowerBound_[memIter]); |
294 | 0 | } |
295 | 0 | } |
296 | | // evaluate objective function as soon as possible to avoid unnecessary loops |
297 | 0 | try { |
298 | 0 | population[popIter].cost = p.value(population[popIter].values); |
299 | 0 | } catch (Error&) { |
300 | 0 | population[popIter].cost = QL_MAX_REAL; |
301 | 0 | } |
302 | 0 | if (!std::isfinite(population[popIter].cost)) |
303 | 0 | population[popIter].cost = QL_MAX_REAL; |
304 | |
|
305 | 0 | } |
306 | 0 | } |
307 | | |
308 | | void DifferentialEvolution::getCrossoverMask( |
309 | | std::vector<Array> & crossoverMask, |
310 | | std::vector<Array> & invCrossoverMask, |
311 | 0 | const Array & mutationProbabilities) const { |
312 | 0 | for (Size cmIter = 0; cmIter < crossoverMask.size(); cmIter++) { |
313 | 0 | for (Size memIter = 0; memIter < crossoverMask[cmIter].size(); memIter++) { |
314 | 0 | if (rng_.nextReal() < mutationProbabilities[cmIter]) { |
315 | 0 | invCrossoverMask[cmIter][memIter] = 0.0; |
316 | 0 | } else { |
317 | 0 | crossoverMask[cmIter][memIter] = 0.0; |
318 | 0 | } |
319 | 0 | } |
320 | 0 | } |
321 | 0 | } |
322 | | |
323 | | Array DifferentialEvolution::getMutationProbabilities( |
324 | 0 | const std::vector<Candidate> & population) const { |
325 | 0 | Array mutationProbabilities = currGenCrossover_; |
326 | 0 | switch (configuration().crossoverType) { |
327 | 0 | case Normal: |
328 | 0 | break; |
329 | 0 | case Binomial: |
330 | 0 | mutationProbabilities = currGenCrossover_ |
331 | 0 | * (1.0 - 1.0 / population.front().values.size()) |
332 | 0 | + 1.0 / population.front().values.size(); |
333 | 0 | break; |
334 | 0 | case Exponential: |
335 | 0 | for (Size coIter = 0;coIter< currGenCrossover_.size(); coIter++){ |
336 | 0 | mutationProbabilities[coIter] = |
337 | 0 | (1.0 - std::pow(currGenCrossover_[coIter], |
338 | 0 | (int) population.front().values.size())) |
339 | 0 | / (population.front().values.size() |
340 | 0 | * (1.0 - currGenCrossover_[coIter])); |
341 | 0 | } |
342 | 0 | break; |
343 | 0 | default: |
344 | 0 | QL_FAIL("Unknown crossover type (" |
345 | 0 | << Integer(configuration().crossoverType) << ")"); |
346 | 0 | break; |
347 | 0 | } |
348 | 0 | return mutationProbabilities; |
349 | 0 | } |
350 | | |
351 | 0 | Array DifferentialEvolution::rotateArray(Array a) const { |
352 | 0 | randomize(a.begin(), a.end(), rng_); |
353 | 0 | return a; |
354 | 0 | } |
355 | | |
356 | 0 | void DifferentialEvolution::adaptSizeWeights() const { |
357 | | // [=Fl & =Fu] respectively see Brest, J. et al., 2006, |
358 | | // "Self-Adapting Control Parameters in Differential |
359 | | // Evolution" |
360 | 0 | Real sizeWeightLowerBound = 0.1, sizeWeightUpperBound = 0.9; |
361 | | // [=tau1] A Comparative Study on Numerical Benchmark |
362 | | // Problems." page 649 for reference |
363 | 0 | Real sizeWeightChangeProb = 0.1; |
364 | 0 | for (Real& currGenSizeWeight : currGenSizeWeights_) { |
365 | 0 | if (rng_.nextReal() < sizeWeightChangeProb) |
366 | 0 | currGenSizeWeight = sizeWeightLowerBound + rng_.nextReal() * sizeWeightUpperBound; |
367 | 0 | } |
368 | 0 | } |
369 | | |
370 | 0 | void DifferentialEvolution::adaptCrossover() const { |
371 | 0 | Real crossoverChangeProb = 0.1; // [=tau2] |
372 | 0 | for (Real& coIter : currGenCrossover_) { |
373 | 0 | if (rng_.nextReal() < crossoverChangeProb) |
374 | 0 | coIter = rng_.nextReal(); |
375 | 0 | } |
376 | 0 | } |
377 | | |
378 | | void DifferentialEvolution::fillInitialPopulation( |
379 | | std::vector<Candidate> & population, |
380 | 0 | const Problem& p) const { |
381 | | |
382 | | // use initial values provided by the user |
383 | 0 | population.front().values = p.currentValue(); |
384 | 0 | population.front().cost = p.costFunction().value(population.front().values); |
385 | | // rest of the initial population is random |
386 | 0 | for (Size j = 1; j < population.size(); ++j) { |
387 | 0 | for (Size i = 0; i < p.currentValue().size(); ++i) { |
388 | 0 | Real l = lowerBound_[i], u = upperBound_[i]; |
389 | 0 | population[j].values[i] = l + (u-l)*rng_.nextReal(); |
390 | 0 | } |
391 | 0 | population[j].cost = p.costFunction().value(population[j].values); |
392 | 0 | if (!std::isfinite(population[j].cost)) |
393 | 0 | population[j].cost = QL_MAX_REAL; |
394 | 0 | } |
395 | 0 | } |
396 | | |
397 | | } |