Coverage Report

Created: 2025-08-11 06:28

/src/quantlib/ql/methods/finitedifferences/meshers/exponentialjump1dmesher.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2011 Klaus Spanderen
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <http://quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*! \file exponentialjump1dmesher.cpp
21
    \brief mesher for a exponential jump mesher with high 
22
           mean reversion rate and low jump intensity
23
*/
24
25
#include <ql/math/incompletegamma.hpp>
26
#include <ql/math/integrals/gausslobattointegral.hpp>
27
#include <ql/math/distributions/gammadistribution.hpp>
28
#include <ql/methods/finitedifferences/meshers/exponentialjump1dmesher.hpp>
29
#include <algorithm>
30
31
namespace QuantLib {
32
    ExponentialJump1dMesher::ExponentialJump1dMesher(
33
          Size steps, Real beta, Real jumpIntensity, Real eta, Real eps)
34
0
    : Fdm1dMesher(steps),
35
0
      beta_(beta), jumpIntensity_(jumpIntensity), eta_(eta)
36
0
   {
37
0
        QL_REQUIRE(eps > 0.0 && eps < 1.0, "eps > 0.0 and eps < 1.0");
38
0
        QL_REQUIRE(steps > 1, "minimum number of steps is two");
39
        
40
0
        const Real start = 0.0;
41
0
        const Real end   = 1.0-eps;
42
0
        const Real dx    = (end-start)/(steps-1);
43
0
        const Real scale = 1/(1-std::exp(-beta/jumpIntensity));
44
45
0
        for (Size i=0; i < steps; ++i) {
46
0
            const Real p = start + i*dx;
47
0
            locations_[i] = scale*(-1.0/eta*std::log(1.0-p));
48
0
        }
49
50
0
        for (Size i=0; i < steps-1; ++i) {
51
0
            dminus_[i+1] = dplus_[i] = locations_[i+1]-locations_[i];
52
0
        }
53
0
        dplus_.back() = dminus_.front() = Null<Real>();
54
0
    }
55
                                    
56
                                    
57
0
    Real ExponentialJump1dMesher::jumpSizeDensity(Real x, Time t) const {
58
0
        const Real a    = 1.0-jumpIntensity_/beta_;
59
0
        const Real norm = 1.0-std::exp(-jumpIntensity_*t);
60
0
        const Real gammaValue 
61
0
            = std::exp(GammaFunction().logValue(1.0-jumpIntensity_/beta_));
62
0
        return jumpIntensity_*gammaValue/norm
63
0
                    *( incompleteGammaFunction(a, x*std::exp(beta_*t)*eta_)
64
0
                      -incompleteGammaFunction(a, x*eta_))
65
0
                    *std::pow(eta_, jumpIntensity_/beta_)
66
0
                    /(beta_*std::pow(x, a));
67
0
    }
68
    
69
0
    Real ExponentialJump1dMesher::jumpSizeDensity(Real x) const {
70
0
        const Real a = 1.0-jumpIntensity_/beta_;
71
0
        const Real gammaValue 
72
0
                = std::exp(GammaFunction().logValue(jumpIntensity_/beta_));
73
0
        return std::exp(-x*eta_)*std::pow(x, -a) * std::pow(eta_, 1.0-a) 
74
0
                / gammaValue;
75
0
    }
76
77
0
    Real ExponentialJump1dMesher::jumpSizeDistribution(Real x, Time t) const {
78
0
        const Real xmin = std::min(x, 1.0e-100);
79
80
0
        return GaussLobattoIntegral(1000000, 1e-12)(
81
0
            [&](Real _x){ return jumpSizeDensity(_x, t); },
82
0
            xmin, std::max(x, xmin));
83
0
    }
84
85
0
    Real ExponentialJump1dMesher::jumpSizeDistribution(Real x) const {
86
0
        const Real a    = jumpIntensity_/beta_;
87
0
        const Real xmin = std::min(x, QL_EPSILON);
88
0
        const Real gammaValue 
89
0
                = std::exp(GammaFunction().logValue(jumpIntensity_/beta_));
90
        
91
0
        const Real lowerEps = 
92
0
            (std::pow(xmin, a)/a - std::pow(xmin, a+1)/(a+1))/gammaValue;
93
        
94
0
        return lowerEps + GaussLobattoIntegral(10000, 1e-12)(
95
0
            [&](Real _x){ return jumpSizeDensity(_x); },
96
0
            xmin/eta_, std::max(x, xmin/eta_));
97
0
    }
98
}