/src/quantlib/ql/pricingengines/vanilla/analyticdividendeuropeanengine.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2004, 2007 StatPro Italia srl |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <http://quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/exercise.hpp> |
21 | | #include <ql/pricingengines/blackcalculator.hpp> |
22 | | #include <ql/pricingengines/vanilla/analyticdividendeuropeanengine.hpp> |
23 | | #include <utility> |
24 | | |
25 | | namespace QuantLib { |
26 | | |
27 | | AnalyticDividendEuropeanEngine::AnalyticDividendEuropeanEngine( |
28 | | ext::shared_ptr<GeneralizedBlackScholesProcess> process, |
29 | | DividendSchedule dividends) |
30 | 0 | : process_(std::move(process)), dividends_(std::move(dividends)) { |
31 | 0 | registerWith(process_); |
32 | 0 | } |
33 | | |
34 | 0 | void AnalyticDividendEuropeanEngine::calculate() const { |
35 | |
|
36 | 0 | QL_REQUIRE(arguments_.exercise->type() == Exercise::European, |
37 | 0 | "not an European option"); |
38 | | |
39 | 0 | ext::shared_ptr<StrikedTypePayoff> payoff = |
40 | 0 | ext::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff); |
41 | 0 | QL_REQUIRE(payoff, "non-striked payoff given"); |
42 | | |
43 | 0 | Date settlementDate = process_->riskFreeRate()->referenceDate(); |
44 | 0 | Real riskless = 0.0; |
45 | 0 | Size i; |
46 | 0 | for (i=0; i<dividends_.size(); i++) { |
47 | 0 | const Date cashFlowDate = dividends_[i]->date(); |
48 | |
|
49 | 0 | if ( cashFlowDate >= settlementDate |
50 | 0 | && cashFlowDate <= arguments_.exercise->lastDate()) { |
51 | |
|
52 | 0 | riskless += dividends_[i]->amount() * |
53 | 0 | process_->riskFreeRate()->discount(cashFlowDate) / |
54 | 0 | process_->dividendYield()->discount(cashFlowDate); |
55 | 0 | } |
56 | 0 | } |
57 | |
|
58 | 0 | Real spot = process_->stateVariable()->value() - riskless; |
59 | 0 | QL_REQUIRE(spot > 0.0, |
60 | 0 | "negative or null underlying after subtracting dividends"); |
61 | | |
62 | 0 | DiscountFactor dividendDiscount = |
63 | 0 | process_->dividendYield()->discount( |
64 | 0 | arguments_.exercise->lastDate()); |
65 | 0 | DiscountFactor riskFreeDiscount = |
66 | 0 | process_->riskFreeRate()->discount(arguments_.exercise->lastDate()); |
67 | 0 | Real forwardPrice = spot * dividendDiscount / riskFreeDiscount; |
68 | |
|
69 | 0 | Real variance = |
70 | 0 | process_->blackVolatility()->blackVariance( |
71 | 0 | arguments_.exercise->lastDate(), |
72 | 0 | payoff->strike()); |
73 | |
|
74 | 0 | BlackCalculator black(payoff, forwardPrice, std::sqrt(variance), |
75 | 0 | riskFreeDiscount); |
76 | |
|
77 | 0 | results_.value = black.value(); |
78 | 0 | results_.delta = black.delta(spot); |
79 | 0 | results_.gamma = black.gamma(spot); |
80 | |
|
81 | 0 | DayCounter rfdc = process_->riskFreeRate()->dayCounter(); |
82 | 0 | DayCounter dydc = process_->dividendYield()->dayCounter(); |
83 | 0 | DayCounter voldc = process_->blackVolatility()->dayCounter(); |
84 | 0 | Time t = voldc.yearFraction( |
85 | 0 | process_->blackVolatility()->referenceDate(), |
86 | 0 | arguments_.exercise->lastDate()); |
87 | 0 | results_.vega = black.vega(t); |
88 | |
|
89 | 0 | Real delta_theta = 0.0, delta_rho = 0.0; |
90 | 0 | for (i = 0; i < dividends_.size(); i++) { |
91 | 0 | Date d = dividends_[i]->date(); |
92 | |
|
93 | 0 | if ( d >= settlementDate |
94 | 0 | && d <= arguments_.exercise->lastDate()) { |
95 | |
|
96 | 0 | delta_theta -= dividends_[i]->amount() * |
97 | 0 | ( process_->riskFreeRate()->zeroRate(d,rfdc,Continuous,Annual).rate() |
98 | 0 | - process_->dividendYield()->zeroRate(d,dydc,Continuous,Annual).rate()) * |
99 | 0 | process_->riskFreeRate()->discount(d) / |
100 | 0 | process_->dividendYield()->discount(d); |
101 | |
|
102 | 0 | Time t = process_->time(d); |
103 | 0 | delta_rho += dividends_[i]->amount() * t * |
104 | 0 | process_->riskFreeRate()->discount(t) / |
105 | 0 | process_->dividendYield()->discount(t); |
106 | 0 | } |
107 | 0 | } |
108 | 0 | t = process_->time(arguments_.exercise->lastDate()); |
109 | 0 | try { |
110 | 0 | results_.theta = black.theta(spot, t) + |
111 | 0 | delta_theta * black.delta(spot); |
112 | 0 | } catch (Error&) { |
113 | 0 | results_.theta = Null<Real>(); |
114 | 0 | } |
115 | |
|
116 | 0 | results_.rho = black.rho(t) + |
117 | 0 | delta_rho * black.delta(spot); |
118 | 0 | } |
119 | | |
120 | | } |
121 | | |