Coverage Report

Created: 2025-09-04 07:11

/src/quantlib/ql/math/integrals/simpsonintegral.hpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2003 Roman Gitlin
5
 Copyright (C) 2003 StatPro Italia srl
6
7
 This file is part of QuantLib, a free-software/open-source library
8
 for financial quantitative analysts and developers - http://quantlib.org/
9
10
 QuantLib is free software: you can redistribute it and/or modify it
11
 under the terms of the QuantLib license.  You should have received a
12
 copy of the license along with this program; if not, please email
13
 <quantlib-dev@lists.sf.net>. The license is also available online at
14
 <https://www.quantlib.org/license.shtml>.
15
16
 This program is distributed in the hope that it will be useful, but WITHOUT
17
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18
 FOR A PARTICULAR PURPOSE.  See the license for more details.
19
*/
20
21
/*! \file simpsonintegral.hpp
22
    \brief integral of a one-dimensional function using Simpson formula
23
*/
24
25
#ifndef quantlib_simpson_integral_hpp
26
#define quantlib_simpson_integral_hpp
27
28
#include <ql/math/integrals/trapezoidintegral.hpp>
29
30
namespace QuantLib {
31
32
    //! Integral of a one-dimensional function
33
    /*! \test the correctness of the result is tested by checking it
34
              against known good values.
35
    */
36
    class SimpsonIntegral : public TrapezoidIntegral<Default> {
37
      public:
38
        SimpsonIntegral(Real accuracy,
39
                        Size maxIterations)
40
0
        : TrapezoidIntegral<Default>(accuracy, maxIterations) {}
41
      protected:
42
0
        Real integrate(const std::function<Real(Real)>& f, Real a, Real b) const override {
43
44
            // start from the coarsest trapezoid...
45
0
            Size N = 1;
46
0
            Real I = (f(a)+f(b))*(b-a)/2.0, newI;
47
0
            increaseNumberOfEvaluations(2);
48
49
0
            Real adjI = I, newAdjI;
50
            // ...and refine it
51
0
            Size i = 1;
52
0
            do {
53
0
                newI = Default::integrate(f,a,b,I,N);
54
0
                increaseNumberOfEvaluations(N);
55
0
                N *= 2;
56
0
                newAdjI = (4.0*newI-I)/3.0;
57
                // good enough? Also, don't run away immediately
58
0
                if (std::fabs(adjI-newAdjI) <= absoluteAccuracy() && i > 5)
59
                    // ok, exit
60
0
                    return newAdjI;
61
                // oh well. Another step.
62
0
                I = newI;
63
0
                adjI = newAdjI;
64
0
                i++;
65
0
            } while (i < maxEvaluations());
66
0
            QL_FAIL("max number of iterations reached");
67
0
        }
68
    };
69
70
}
71
72
#endif