/src/quantlib/ql/math/randomnumbers/inversecumulativersg.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2003, 2004 Ferdinando Ametrano |
5 | | Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | /*! \file inversecumulativersg.hpp |
22 | | \brief Inverse cumulative random sequence generator |
23 | | */ |
24 | | |
25 | | #ifndef quantlib_inversecumulative_rsg_h |
26 | | #define quantlib_inversecumulative_rsg_h |
27 | | |
28 | | #include <ql/methods/montecarlo/sample.hpp> |
29 | | #include <utility> |
30 | | #include <vector> |
31 | | |
32 | | namespace QuantLib { |
33 | | |
34 | | //! Inverse cumulative random sequence generator |
35 | | /*! It uses a sequence of uniform deviate in (0, 1) as the |
36 | | source of cumulative distribution values. |
37 | | Then an inverse cumulative distribution is used to calculate |
38 | | the distribution deviate. |
39 | | |
40 | | The uniform deviate sequence is supplied by USG. |
41 | | |
42 | | Class USG must implement the following interface: |
43 | | \code |
44 | | USG::sample_type USG::nextSequence() const; |
45 | | Size USG::dimension() const; |
46 | | \endcode |
47 | | |
48 | | The inverse cumulative distribution is supplied by IC. |
49 | | |
50 | | Class IC must implement the following interface: |
51 | | \code |
52 | | IC::IC(); |
53 | | Real IC::operator() const; |
54 | | \endcode |
55 | | */ |
56 | | template <class USG, class IC> |
57 | | class InverseCumulativeRsg { |
58 | | public: |
59 | | typedef Sample<std::vector<Real> > sample_type; |
60 | | explicit InverseCumulativeRsg(USG uniformSequenceGenerator); |
61 | | InverseCumulativeRsg(USG uniformSequenceGenerator, const IC& inverseCumulative); |
62 | | //! returns next sample from the inverse cumulative distribution |
63 | | const sample_type& nextSequence() const; |
64 | | const sample_type& lastSequence() const { return x_; } |
65 | | Size dimension() const { return dimension_; } |
66 | | private: |
67 | | USG uniformSequenceGenerator_; |
68 | | Size dimension_; |
69 | | mutable sample_type x_; |
70 | | IC ICD_; |
71 | | }; |
72 | | |
73 | | template <class USG, class IC> |
74 | | InverseCumulativeRsg<USG, IC>::InverseCumulativeRsg(USG usg) |
75 | 0 | : uniformSequenceGenerator_(std::move(usg)), dimension_(uniformSequenceGenerator_.dimension()), |
76 | 0 | x_(std::vector<Real>(dimension_), 1.0) {} |
77 | | |
78 | | template <class USG, class IC> |
79 | | InverseCumulativeRsg<USG, IC>::InverseCumulativeRsg(USG usg, const IC& inverseCum) |
80 | 0 | : uniformSequenceGenerator_(std::move(usg)), dimension_(uniformSequenceGenerator_.dimension()), |
81 | 0 | x_(std::vector<Real>(dimension_), 1.0), ICD_(inverseCum) {} Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::RandomSequenceGenerator<QuantLib::MersenneTwisterUniformRng>, QuantLib::InverseCumulativeNormal>::InverseCumulativeRsg(QuantLib::RandomSequenceGenerator<QuantLib::MersenneTwisterUniformRng>, QuantLib::InverseCumulativeNormal const&) Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::SobolRsg, QuantLib::InverseCumulativeNormal>::InverseCumulativeRsg(QuantLib::SobolRsg, QuantLib::InverseCumulativeNormal const&) Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::Burley2020SobolRsg, QuantLib::InverseCumulativeNormal>::InverseCumulativeRsg(QuantLib::Burley2020SobolRsg, QuantLib::InverseCumulativeNormal const&) |
82 | | |
83 | | template <class USG, class IC> |
84 | | inline const typename InverseCumulativeRsg<USG, IC>::sample_type& |
85 | 0 | InverseCumulativeRsg<USG, IC>::nextSequence() const { |
86 | 0 | typename USG::sample_type sample = |
87 | 0 | uniformSequenceGenerator_.nextSequence(); |
88 | 0 | x_.weight = sample.weight; |
89 | 0 | for (Size i = 0; i < dimension_; i++) { |
90 | 0 | x_.value[i] = ICD_(sample.value[i]); |
91 | 0 | } |
92 | 0 | return x_; |
93 | 0 | } Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::RandomSequenceGenerator<QuantLib::MersenneTwisterUniformRng>, QuantLib::InverseCumulativeNormal>::nextSequence() const Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::SobolRsg, QuantLib::InverseCumulativeNormal>::nextSequence() const Unexecuted instantiation: QuantLib::InverseCumulativeRsg<QuantLib::Burley2020SobolRsg, QuantLib::InverseCumulativeNormal>::nextSequence() const |
94 | | |
95 | | } |
96 | | |
97 | | |
98 | | #endif |