/src/quantlib/ql/processes/coxingersollrossprocess.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2020 Lew Wei Hao |
5 | | Copyright (C) 2021 Magnus Mencke |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | /*! \file coxingersollrossprocess.hpp |
22 | | \brief CoxIngersollRoss process |
23 | | */ |
24 | | |
25 | | #ifndef quantlib_coxingersollross_process_hpp |
26 | | #define quantlib_coxingersollross_process_hpp |
27 | | |
28 | | #include <ql/stochasticprocess.hpp> |
29 | | #include <ql/math/distributions/normaldistribution.hpp> |
30 | | |
31 | | namespace QuantLib { |
32 | | |
33 | | //! CoxIngersollRoss process class |
34 | | /*! This class describes the CoxIngersollRoss process governed by |
35 | | \f[ |
36 | | dx(t) = k (\theta - x(t)) dt + \sigma \sqrt{x(t)} dW(t). |
37 | | \f] |
38 | | |
39 | | The process is discretized using the Quadratic Exponential scheme. |
40 | | For details see Leif Andersen, |
41 | | Efficient Simulation of the Heston Stochastic Volatility Model. |
42 | | |
43 | | \ingroup processes |
44 | | */ |
45 | | class CoxIngersollRossProcess : public StochasticProcess1D { |
46 | | public: |
47 | | |
48 | | CoxIngersollRossProcess(Real speed, |
49 | | Volatility vol, |
50 | | Real x0 = 0.0, |
51 | | Real level = 0.0); |
52 | | //@{ |
53 | | Real drift(Time t, Real x) const override; |
54 | | Real diffusion(Time t, Real x) const override; |
55 | | Real expectation(Time t0, Real x0, Time dt) const override; |
56 | | Real stdDeviation(Time t0, Real x0, Time dt) const override; |
57 | | //@} |
58 | | Real x0() const override; |
59 | | Real speed() const; |
60 | | Real volatility() const; |
61 | | Real level() const; |
62 | | Real variance(Time t0, Real x0, Time dt) const override; |
63 | | Real evolve (Time t0, |
64 | | Real x0, |
65 | | Time dt, |
66 | | Real dw) const override; |
67 | | private: |
68 | | Real x0_, speed_, level_; |
69 | | Volatility volatility_; |
70 | | }; |
71 | | |
72 | | // inline |
73 | | |
74 | 0 | inline Real CoxIngersollRossProcess::x0() const { |
75 | 0 | return x0_; |
76 | 0 | } |
77 | | |
78 | 0 | inline Real CoxIngersollRossProcess::speed() const { |
79 | 0 | return speed_; |
80 | 0 | } |
81 | | |
82 | 0 | inline Real CoxIngersollRossProcess::volatility() const { |
83 | 0 | return volatility_; |
84 | 0 | } |
85 | | |
86 | 0 | inline Real CoxIngersollRossProcess::level() const { |
87 | 0 | return level_; |
88 | 0 | } |
89 | | |
90 | 0 | inline Real CoxIngersollRossProcess::drift(Time, Real x) const { |
91 | 0 | return speed_ * (level_ - x); |
92 | 0 | } |
93 | | |
94 | 0 | inline Real CoxIngersollRossProcess::diffusion(Time, Real) const { |
95 | 0 | return volatility_; |
96 | 0 | } |
97 | | |
98 | | inline Real CoxIngersollRossProcess::expectation(Time, Real x0, |
99 | 0 | Time dt) const { |
100 | 0 | return level_ + (x0 - level_) * std::exp(-speed_*dt); |
101 | 0 | } |
102 | | |
103 | | inline Real CoxIngersollRossProcess::stdDeviation(Time t, Real x0, |
104 | 0 | Time dt) const { |
105 | 0 | return std::sqrt(variance(t,x0,dt)); |
106 | 0 | } |
107 | | |
108 | | inline Real CoxIngersollRossProcess::evolve (Time t0, |
109 | | Real x0, |
110 | | Time dt, |
111 | 0 | Real dw) const { |
112 | 0 | Real result; |
113 | |
|
114 | 0 | const Real ex = std::exp(-speed_*dt); |
115 | |
|
116 | 0 | const Real m = level_+(x0-level_)*ex; |
117 | 0 | const Real s2 = x0*volatility_*volatility_*ex/speed_*(1-ex) |
118 | 0 | + level_*volatility_*volatility_/(2*speed_)*(1-ex)*(1-ex); |
119 | 0 | const Real psi = s2/(m*m); |
120 | |
|
121 | 0 | if (psi <= 1.5) { |
122 | 0 | const Real b2 = 2/psi-1+std::sqrt(2/psi*(2/psi-1)); |
123 | 0 | const Real b = std::sqrt(b2); |
124 | 0 | const Real a = m/(1+b2); |
125 | |
|
126 | 0 | result = a*(b+dw)*(b+dw); |
127 | 0 | } |
128 | 0 | else { |
129 | 0 | const Real p = (psi-1)/(psi+1); |
130 | 0 | const Real beta = (1-p)/m; |
131 | |
|
132 | 0 | const Real u = CumulativeNormalDistribution()(dw); |
133 | |
|
134 | 0 | result = ((u <= p) ? 0.0 : Real(std::log((1-p)/(1-u))/beta)); |
135 | 0 | } |
136 | |
|
137 | 0 | return result; |
138 | 0 | } |
139 | | |
140 | | } |
141 | | |
142 | | #endif |