Coverage Report

Created: 2025-09-04 07:11

/src/quantlib/ql/processes/hestonprocess.hpp
Line
Count
Source (jump to first uncovered line)
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2005, 2007, 2009, 2014 Klaus Spanderen
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*! \file hestonprocess.hpp
21
    \brief Heston stochastic process
22
*/
23
24
#ifndef quantlib_heston_process_hpp
25
#define quantlib_heston_process_hpp
26
27
#include <ql/stochasticprocess.hpp>
28
#include <ql/termstructures/yieldtermstructure.hpp>
29
#include <ql/quote.hpp>
30
31
namespace QuantLib {
32
33
    //! Square-root stochastic-volatility Heston process
34
    /*! This class describes the square root stochastic volatility
35
        process governed by
36
        \f[
37
        \begin{array}{rcl}
38
        dS(t, S)  &=& \mu S dt + \sqrt{v} S dW_1 \\
39
        dv(t, S)  &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\
40
        dW_1 dW_2 &=& \rho dt
41
        \end{array}
42
        \f]
43
44
        \ingroup processes
45
    */
46
    class HestonProcess : public StochasticProcess {
47
      public:
48
        enum Discretization { PartialTruncation,
49
                              FullTruncation,
50
                              Reflection,
51
                              NonCentralChiSquareVariance,
52
                              QuadraticExponential,
53
                              QuadraticExponentialMartingale,
54
                              BroadieKayaExactSchemeLobatto,
55
                              BroadieKayaExactSchemeLaguerre,
56
                              BroadieKayaExactSchemeTrapezoidal };
57
58
        HestonProcess(Handle<YieldTermStructure> riskFreeRate,
59
                      Handle<YieldTermStructure> dividendYield,
60
                      Handle<Quote> s0,
61
                      Real v0,
62
                      Real kappa,
63
                      Real theta,
64
                      Real sigma,
65
                      Real rho,
66
                      Discretization d = QuadraticExponentialMartingale);
67
68
        Size size() const override;
69
        Size factors() const override;
70
71
        Array initialValues() const override;
72
        Array drift(Time t, const Array& x) const override;
73
        Matrix diffusion(Time t, const Array& x) const override;
74
        Array apply(const Array& x0, const Array& dx) const override;
75
        Array evolve(Time t0, const Array& x0, Time dt, const Array& dw) const override;
76
77
0
        Real v0()    const { return v0_; }
78
0
        Real rho()   const { return rho_; }
79
0
        Real kappa() const { return kappa_; }
80
0
        Real theta() const { return theta_; }
81
0
        Real sigma() const { return sigma_; }
82
83
        const Handle<Quote>& s0() const;
84
        const Handle<YieldTermStructure>& dividendYield() const;
85
        const Handle<YieldTermStructure>& riskFreeRate() const;
86
87
        Time time(const Date&) const override;
88
89
        // probability densitiy function,
90
        // semi-analytical solution of the Fokker-Planck equation in x=ln(s)
91
        Real pdf(Real x, Real v, Time t, Real eps=1e-3) const;
92
93
      private:
94
        Real varianceDistribution(Real v, Real dw, Time dt) const;
95
96
        Handle<YieldTermStructure> riskFreeRate_, dividendYield_;
97
        Handle<Quote> s0_;
98
        Real v0_, kappa_, theta_, sigma_, rho_;
99
        Discretization discretization_;
100
    };
101
}
102
#endif