/src/quantlib/ql/processes/hestonprocess.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2005, 2007, 2009, 2014 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file hestonprocess.hpp |
21 | | \brief Heston stochastic process |
22 | | */ |
23 | | |
24 | | #ifndef quantlib_heston_process_hpp |
25 | | #define quantlib_heston_process_hpp |
26 | | |
27 | | #include <ql/stochasticprocess.hpp> |
28 | | #include <ql/termstructures/yieldtermstructure.hpp> |
29 | | #include <ql/quote.hpp> |
30 | | |
31 | | namespace QuantLib { |
32 | | |
33 | | //! Square-root stochastic-volatility Heston process |
34 | | /*! This class describes the square root stochastic volatility |
35 | | process governed by |
36 | | \f[ |
37 | | \begin{array}{rcl} |
38 | | dS(t, S) &=& \mu S dt + \sqrt{v} S dW_1 \\ |
39 | | dv(t, S) &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\ |
40 | | dW_1 dW_2 &=& \rho dt |
41 | | \end{array} |
42 | | \f] |
43 | | |
44 | | \ingroup processes |
45 | | */ |
46 | | class HestonProcess : public StochasticProcess { |
47 | | public: |
48 | | enum Discretization { PartialTruncation, |
49 | | FullTruncation, |
50 | | Reflection, |
51 | | NonCentralChiSquareVariance, |
52 | | QuadraticExponential, |
53 | | QuadraticExponentialMartingale, |
54 | | BroadieKayaExactSchemeLobatto, |
55 | | BroadieKayaExactSchemeLaguerre, |
56 | | BroadieKayaExactSchemeTrapezoidal }; |
57 | | |
58 | | HestonProcess(Handle<YieldTermStructure> riskFreeRate, |
59 | | Handle<YieldTermStructure> dividendYield, |
60 | | Handle<Quote> s0, |
61 | | Real v0, |
62 | | Real kappa, |
63 | | Real theta, |
64 | | Real sigma, |
65 | | Real rho, |
66 | | Discretization d = QuadraticExponentialMartingale); |
67 | | |
68 | | Size size() const override; |
69 | | Size factors() const override; |
70 | | |
71 | | Array initialValues() const override; |
72 | | Array drift(Time t, const Array& x) const override; |
73 | | Matrix diffusion(Time t, const Array& x) const override; |
74 | | Array apply(const Array& x0, const Array& dx) const override; |
75 | | Array evolve(Time t0, const Array& x0, Time dt, const Array& dw) const override; |
76 | | |
77 | 0 | Real v0() const { return v0_; } |
78 | 0 | Real rho() const { return rho_; } |
79 | 0 | Real kappa() const { return kappa_; } |
80 | 0 | Real theta() const { return theta_; } |
81 | 0 | Real sigma() const { return sigma_; } |
82 | | |
83 | | const Handle<Quote>& s0() const; |
84 | | const Handle<YieldTermStructure>& dividendYield() const; |
85 | | const Handle<YieldTermStructure>& riskFreeRate() const; |
86 | | |
87 | | Time time(const Date&) const override; |
88 | | |
89 | | // probability densitiy function, |
90 | | // semi-analytical solution of the Fokker-Planck equation in x=ln(s) |
91 | | Real pdf(Real x, Real v, Time t, Real eps=1e-3) const; |
92 | | |
93 | | private: |
94 | | Real varianceDistribution(Real v, Real dw, Time dt) const; |
95 | | |
96 | | Handle<YieldTermStructure> riskFreeRate_, dividendYield_; |
97 | | Handle<Quote> s0_; |
98 | | Real v0_, kappa_, theta_, sigma_, rho_; |
99 | | Discretization discretization_; |
100 | | }; |
101 | | } |
102 | | #endif |