/src/quantlib/ql/experimental/credit/distribution.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2008 Roland Lichters |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file distribution.hpp |
21 | | \brief Discretized probability density and cumulative probability |
22 | | */ |
23 | | |
24 | | #ifndef quantlib_probability_distribution_hpp |
25 | | #define quantlib_probability_distribution_hpp |
26 | | |
27 | | #include <ql/types.hpp> |
28 | | #include <vector> |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | //! Discretized probability density and cumulative probability |
33 | | /*! Discretized probability density and cumulative probability |
34 | | \ingroup probability |
35 | | */ |
36 | | class ManipulateDistribution; |
37 | | class Distribution { |
38 | | public: |
39 | | friend class ManipulateDistribution; |
40 | | Distribution (int nBuckets, Real xmin, Real xmax); |
41 | | Distribution() = default; |
42 | | ; |
43 | | |
44 | | void add (Real value); |
45 | | void addDensity (int bucket, Real value); |
46 | | void addAverage (int bucket, Real value); |
47 | | void normalize (); |
48 | | |
49 | 0 | Size size () const { return size_; } |
50 | 0 | Real x (Size k) { return x_.at(k); } |
51 | 0 | std::vector<Real>& x () { return x_; } |
52 | 0 | Real dx (Size k) { return dx_.at(k); } |
53 | 0 | std::vector<Real>& dx () { return dx_; } |
54 | | Real dx (Real x); |
55 | | |
56 | 0 | Real density (Size k) { |
57 | 0 | normalize(); |
58 | 0 | return density_.at(k); |
59 | 0 | } |
60 | 0 | Real cumulative (Size k) { |
61 | 0 | normalize(); |
62 | 0 | return cumulativeDensity_.at(k); |
63 | 0 | } |
64 | 0 | Real excess (Size k) { |
65 | 0 | normalize(); |
66 | 0 | return excessProbability_.at(k); |
67 | 0 | } |
68 | 0 | Real cumulativeExcess (Size k) { |
69 | 0 | normalize(); |
70 | 0 | return cumulativeExcessProbability_.at(k); |
71 | 0 | } |
72 | 0 | Real average (Size k) { return average_.at(k); } |
73 | | |
74 | | Real confidenceLevel (Real quantil); |
75 | | Real cumulativeDensity (Real x); |
76 | | Real cumulativeExcessProbability (Real a, Real b); |
77 | | Real expectedValue (); |
78 | | Real trancheExpectedValue (Real a, Real d); |
79 | | |
80 | | template <class F> |
81 | | Real expectedValue (F& f) { |
82 | | normalize(); |
83 | | Real expected = 0; |
84 | | for (int i = 0; i < size_; i++) { |
85 | | Real x = x_[i] + dx_[i]/2; |
86 | | expected += f (x) * dx_[i] * density_[i]; |
87 | | } |
88 | | return expected; |
89 | | } |
90 | | |
91 | | /*! |
92 | | Transform the loss distribution into the tranche loss distribution |
93 | | for losses L_T = min(L,D) - min(L,A). |
94 | | The effects are: |
95 | | 1) shift the distribution to the left by A, then |
96 | | 2) cut off at D-A, Pr(L_T > D-A) = 0 |
97 | | 3) ensure Pr(L_T >= 0) = 1, i.e. a density spike at L_T = 0 |
98 | | */ |
99 | | void tranche (Real attachmentPoint, Real detachmentPoint); |
100 | | |
101 | | /* |
102 | | index of the grid point to the left of x |
103 | | */ |
104 | | int locate (Real x); |
105 | | |
106 | | /* Returns the average value conditional on values above |
107 | | the passed percentile probability */ |
108 | | Real expectedShortfall (Real percValue); |
109 | | private: |
110 | | int size_; |
111 | | Real xmin_, xmax_; |
112 | | std::vector<int> count_; |
113 | | // x: coordinate of left hand cell bundary |
114 | | // dx: cell width |
115 | | std::vector<Real> x_, dx_; |
116 | | // density: probability density, densitx*dx = prob. of loss in cell i |
117 | | // cumulatedDensity: cumulated (integrated) from x = 0 |
118 | | // excessProbability: cumulated from x_i to infinity |
119 | | // cumulativeExcessProbability: integrated excessProbability from x = 0 |
120 | | std::vector<Real> density_, cumulativeDensity_; |
121 | | std::vector<Real> excessProbability_, cumulativeExcessProbability_; |
122 | | // average loss in cell i |
123 | | std::vector<Real> average_; |
124 | | |
125 | | int overFlow_, underFlow_; |
126 | | bool isNormalized_; |
127 | | }; |
128 | | |
129 | | class ManipulateDistribution { |
130 | | public: |
131 | | static Distribution convolve (const Distribution& d1, |
132 | | const Distribution& d2); |
133 | | }; |
134 | | |
135 | | } |
136 | | |
137 | | #endif |