/src/quantlib/ql/experimental/math/particleswarmoptimization.hpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2015 Andres Hernandez |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file particleswarmoptimization.hpp |
21 | | \brief Implementation based on: |
22 | | Clerc, M., Kennedy, J. (2002) The particle swarm-explosion, stability and |
23 | | convergence in a multidimensional complex space. IEEE Transactions on Evolutionary |
24 | | Computation, 6(2): 58–73. |
25 | | */ |
26 | | |
27 | | #ifndef quantlib_optimization_particleswarmoptimization_hpp |
28 | | #define quantlib_optimization_particleswarmoptimization_hpp |
29 | | |
30 | | #include <ql/math/optimization/problem.hpp> |
31 | | #include <ql/math/optimization/constraint.hpp> |
32 | | #include <ql/math/randomnumbers/mt19937uniformrng.hpp> |
33 | | #include <ql/experimental/math/isotropicrandomwalk.hpp> |
34 | | #include <ql/experimental/math/levyflightdistribution.hpp> |
35 | | #include <ql/math/randomnumbers/seedgenerator.hpp> |
36 | | |
37 | | #include <random> |
38 | | |
39 | | namespace QuantLib { |
40 | | |
41 | | /*! The process is as follows: |
42 | | M individuals are used to explore the N-dimensional parameter space: |
43 | | \f$ X_{i}^k = (X_{i, 1}^k, X_{i, 2}^k, \ldots, X_{i, N}^k) \f$ is the kth-iteration for the ith-individual. |
44 | | |
45 | | X is updated via the rule |
46 | | \f[ |
47 | | X_{i, j}^{k+1} = X_{i, j}^k + V_{i, j}^{k+1} |
48 | | \f] |
49 | | with V being the "velocity" that updates the position: |
50 | | \f[ |
51 | | V_{i, j}^{k+1} = \chi\left(V_{i, j}^k + c_1 r_{i, j}^k (P_{i, j}^k - X_{i, j}^k) |
52 | | + c_2 R_{i, j}^k (G_{i, j}^k - X_{i, j}^k)\right) |
53 | | \f] |
54 | | where c are constants, r and R are uniformly distributed random numbers in the range [0, 1], and |
55 | | \f$ P_{i, j} \f$ is the personal best parameter set for individual i up to iteration k |
56 | | \f$ G_{i, j} \f$ is the global best parameter set for the swarm up to iteration k. |
57 | | \f$ c_1 \f$ is the self recognition coefficient |
58 | | \f$ c_2 \f$ is the social recognition coefficient |
59 | | |
60 | | This version is known as the PSO with constriction factor (PSO-Co). |
61 | | PSO with inertia factor (PSO-In) updates the velocity according to: |
62 | | \f[ |
63 | | V_{i, j}^{k+1} = \omega V_{i, j}^k + \hat{c}_1 r_{i, j}^k (P_{i, j}^k - X_{i, j}^k) |
64 | | + \hat{c}_2 R_{i, j}^k (G_{i, j}^k - X_{i, j}^k) |
65 | | \f] |
66 | | and is accessible from PSO-Co by setting \f$ \omega = \chi \f$, |
67 | | and \f$ \hat{c}_{1,2} = \chi c_{1,2} \f$. |
68 | | |
69 | | These two versions of PSO are normally referred to as canonical PSO. |
70 | | |
71 | | Convergence of PSO-Co is improved if \f$ \chi \f$ is chosen as |
72 | | \f$ \chi = \frac{2}{\vert 2-\phi-\sqrt{\phi^2 - 4\phi}\vert} \f$, |
73 | | with \f$ \phi = c_1 + c_2 \f$. |
74 | | Stable convergence is achieved if \f$ \phi >= 4 \f$. Clerc and Kennedy recommend |
75 | | \f$ c_1 = c_2 = 2.05 \f$ and \f$ \phi = 4.1 \f$. |
76 | | |
77 | | Different topologies can be chosen for G, e.g. instead of it being the best |
78 | | of the swarm, it is the best of the nearest neighbours, or some other form. |
79 | | |
80 | | In the canonical PSO, the inertia function is trivial. It is simply a |
81 | | constant (the inertia) multiplying the previous iteration's velocity. The |
82 | | value of the inertia constant determines the weight of a global search over |
83 | | local search. Like in the case of the topology, other possibilities for the |
84 | | inertia function are also possible, e.g. a function that interpolates between a |
85 | | high inertia at the beginning of the optimization (hence prioritizing a global |
86 | | search) and a low inertia towards the end of the optimization (hence prioritizing |
87 | | a local search). |
88 | | |
89 | | The optimization stops either because the number of iterations has been reached |
90 | | or because the stationary function value limit has been reached. |
91 | | */ |
92 | | class ParticleSwarmOptimization : public OptimizationMethod { |
93 | | public: |
94 | | class Inertia; |
95 | | class Topology; |
96 | | ParticleSwarmOptimization(Size M, |
97 | | ext::shared_ptr<Topology> topology, |
98 | | ext::shared_ptr<Inertia> inertia, |
99 | | Real c1 = 2.05, |
100 | | Real c2 = 2.05, |
101 | | unsigned long seed = SeedGenerator::instance().get()); |
102 | | explicit ParticleSwarmOptimization(Size M, |
103 | | ext::shared_ptr<Topology> topology, |
104 | | ext::shared_ptr<Inertia> inertia, |
105 | | Real omega, |
106 | | Real c1, |
107 | | Real c2, |
108 | | unsigned long seed = SeedGenerator::instance().get()); |
109 | | void startState(Problem &P, const EndCriteria &endCriteria); |
110 | | EndCriteria::Type minimize(Problem& P, const EndCriteria& endCriteria) override; |
111 | | |
112 | | protected: |
113 | | std::vector<Array> X_, V_, pBX_, gBX_; |
114 | | Array pBF_, gBF_; |
115 | | Array lX_, uX_; |
116 | | Size M_, N_; |
117 | | Real c0_, c1_, c2_; |
118 | | MersenneTwisterUniformRng rng_; |
119 | | ext::shared_ptr<Topology> topology_; |
120 | | ext::shared_ptr<Inertia> inertia_; |
121 | | }; |
122 | | |
123 | | //! Base inertia class used to alter the PSO state |
124 | | /*! This pure virtual base class provides the access to the PSO state |
125 | | which the particular inertia algorithm will change upon each iteration. |
126 | | */ |
127 | | class ParticleSwarmOptimization::Inertia { |
128 | | friend class ParticleSwarmOptimization; |
129 | | public: |
130 | 0 | virtual ~Inertia() = default; |
131 | | //! initialize state for current problem |
132 | | virtual void setSize(Size M, Size N, Real c0, const EndCriteria &endCriteria) = 0; |
133 | | //! produce changes to PSO state for current iteration |
134 | | virtual void setValues() = 0; |
135 | | protected: |
136 | | ParticleSwarmOptimization *pso_; |
137 | | std::vector<Array> *X_, *V_, *pBX_, *gBX_; |
138 | | Array *pBF_, *gBF_; |
139 | | Array *lX_, *uX_; |
140 | | |
141 | 0 | virtual void init(ParticleSwarmOptimization *pso) { |
142 | 0 | pso_ = pso; |
143 | 0 | X_ = &pso_->X_; |
144 | 0 | V_ = &pso_->V_; |
145 | 0 | pBX_ = &pso_->pBX_; |
146 | 0 | gBX_ = &pso_->gBX_; |
147 | 0 | pBF_ = &pso_->pBF_; |
148 | 0 | gBF_ = &pso_->gBF_; |
149 | 0 | lX_ = &pso_->lX_; |
150 | 0 | uX_ = &pso_->uX_; |
151 | 0 | } |
152 | | }; |
153 | | |
154 | | //! Trivial Inertia |
155 | | /* Inertia is a static value |
156 | | */ |
157 | | class TrivialInertia : public ParticleSwarmOptimization::Inertia { |
158 | | public: |
159 | 0 | void setSize(Size M, Size N, Real c0, const EndCriteria& endCriteria) override { |
160 | 0 | c0_ = c0; |
161 | 0 | M_ = M; |
162 | 0 | } |
163 | 0 | void setValues() override { |
164 | 0 | for (Size i = 0; i < M_; i++) { |
165 | 0 | (*V_)[i] *= c0_; |
166 | 0 | } |
167 | 0 | } |
168 | | |
169 | | private: |
170 | | Real c0_; |
171 | | Size M_; |
172 | | }; |
173 | | |
174 | | //! Simple Random Inertia |
175 | | /* Inertia value gets multiplied with a random number |
176 | | between (threshold, 1) |
177 | | */ |
178 | | class SimpleRandomInertia : public ParticleSwarmOptimization::Inertia { |
179 | | public: |
180 | | SimpleRandomInertia(Real threshold = 0.5, unsigned long seed = SeedGenerator::instance().get()) |
181 | 0 | : threshold_(threshold), rng_(seed) { |
182 | 0 | QL_REQUIRE(threshold_ >= 0.0 && threshold_ < 1.0, "Threshold must be a Real in [0, 1)"); |
183 | 0 | } |
184 | 0 | void setSize(Size M, Size N, Real c0, const EndCriteria& endCriteria) override { |
185 | 0 | M_ = M; |
186 | 0 | c0_ = c0; |
187 | 0 | } |
188 | 0 | void setValues() override { |
189 | 0 | for (Size i = 0; i < M_; i++) { |
190 | 0 | Real val = c0_*(threshold_ + (1.0 - threshold_)*rng_.nextReal()); |
191 | 0 | (*V_)[i] *= val; |
192 | 0 | } |
193 | 0 | } |
194 | | |
195 | | private: |
196 | | Real c0_, threshold_; |
197 | | Size M_; |
198 | | MersenneTwisterUniformRng rng_; |
199 | | }; |
200 | | |
201 | | //! Decreasing Inertia |
202 | | /* Inertia value gets decreased every iteration until it reaches |
203 | | a value of threshold when iteration reaches the maximum level |
204 | | */ |
205 | | class DecreasingInertia : public ParticleSwarmOptimization::Inertia { |
206 | | public: |
207 | | DecreasingInertia(Real threshold = 0.5) |
208 | 0 | : threshold_(threshold) { |
209 | 0 | QL_REQUIRE(threshold_ >= 0.0 && threshold_ < 1.0, "Threshold must be a Real in [0, 1)"); |
210 | 0 | } |
211 | 0 | void setSize(Size M, Size N, Real c0, const EndCriteria& endCriteria) override { |
212 | 0 | N_ = N; |
213 | 0 | c0_ = c0; |
214 | 0 | iteration_ = 0; |
215 | 0 | maxIterations_ = endCriteria.maxIterations(); |
216 | 0 | } |
217 | 0 | void setValues() override { |
218 | 0 | Real c0 = c0_*(threshold_ + (1.0 - threshold_)*(maxIterations_ - iteration_) / maxIterations_); |
219 | 0 | for (Size i = 0; i < M_; i++) { |
220 | 0 | (*V_)[i] *= c0; |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | private: |
225 | | Real c0_, threshold_; |
226 | | Size M_, N_, maxIterations_, iteration_; |
227 | | }; |
228 | | |
229 | | //! AdaptiveInertia |
230 | | /* Alen Lukic, Approximating Kinetic Parameters Using Particle |
231 | | Swarm Optimization. |
232 | | */ |
233 | | class AdaptiveInertia : public ParticleSwarmOptimization::Inertia { |
234 | | public: |
235 | | AdaptiveInertia(Real minInertia, Real maxInertia, Size sh = 5, Size sl = 2) |
236 | | :minInertia_(minInertia), maxInertia_(maxInertia), |
237 | 0 | sh_(sh), sl_(sl) {}; |
238 | 0 | void setSize(Size M, Size N, Real c0, const EndCriteria& endCriteria) override { |
239 | 0 | M_ = M; |
240 | 0 | c0_ = c0; |
241 | 0 | adaptiveCounter = 0; |
242 | 0 | best_ = QL_MAX_REAL; |
243 | 0 | started_ = false; |
244 | 0 | } |
245 | | void setValues() override; |
246 | | |
247 | | private: |
248 | | Real c0_, best_; |
249 | | Real minInertia_, maxInertia_; |
250 | | Size M_; |
251 | | Size sh_, sl_; |
252 | | Size adaptiveCounter; |
253 | | bool started_; |
254 | | }; |
255 | | |
256 | | //! Levy Flight Inertia |
257 | | /* As long as the particle keeps getting frequent updates to its |
258 | | personal best value, the inertia behaves like a SimpleRandomInertia, |
259 | | but after a number of iterations without improvement, the behaviour |
260 | | changes to that of a Levy flight ~ u^{-1/\alpha} |
261 | | */ |
262 | | class LevyFlightInertia : public ParticleSwarmOptimization::Inertia { |
263 | | public: |
264 | | LevyFlightInertia(Real alpha, Size threshold, |
265 | | unsigned long seed = SeedGenerator::instance().get()) |
266 | | :rng_(seed), generator_(seed), flight_(generator_, LevyFlightDistribution(1.0, alpha), |
267 | | 1, Array(1, 1.0), seed), |
268 | 0 | threshold_(threshold) {}; |
269 | 0 | void setSize(Size M, Size N, Real c0, const EndCriteria& endCriteria) override { |
270 | 0 | M_ = M; |
271 | 0 | N_ = N; |
272 | 0 | c0_ = c0; |
273 | 0 | adaptiveCounter_ = std::vector<Size>(M_, 0); |
274 | 0 | } |
275 | 0 | void setValues() override { |
276 | 0 | for (Size i = 0; i < M_; i++) { |
277 | 0 | if ((*pBF_)[i] < personalBestF_[i]) { |
278 | 0 | personalBestF_[i] = (*pBF_)[i]; |
279 | 0 | adaptiveCounter_[i] = 0; |
280 | 0 | } |
281 | 0 | else { |
282 | 0 | adaptiveCounter_[i]++; |
283 | 0 | } |
284 | 0 | if (adaptiveCounter_[i] <= threshold_) { |
285 | 0 | //Simple Random Inertia |
286 | 0 | (*V_)[i] *= c0_*(0.5 + 0.5*rng_.nextReal()); |
287 | 0 | } |
288 | 0 | else { |
289 | 0 | //If particle has not found a new personal best after threshold_ iterations |
290 | 0 | //then trigger a Levy flight pattern for the speed |
291 | 0 | flight_.nextReal<Real *>(&(*V_)[i][0]); |
292 | 0 | } |
293 | 0 | } |
294 | 0 | } |
295 | | |
296 | | protected: |
297 | 0 | void init(ParticleSwarmOptimization* pso) override { |
298 | 0 | ParticleSwarmOptimization::Inertia::init(pso); |
299 | 0 | personalBestF_ = *pBF_; |
300 | 0 | flight_.setDimension(N_, *lX_, *uX_); |
301 | 0 | } |
302 | | |
303 | | private: |
304 | | MersenneTwisterUniformRng rng_; |
305 | | std::mt19937 generator_; |
306 | | IsotropicRandomWalk<LevyFlightDistribution, std::mt19937> flight_; |
307 | | Array personalBestF_; |
308 | | std::vector<Size> adaptiveCounter_; |
309 | | Real c0_; |
310 | | Size M_, N_; |
311 | | Size threshold_; |
312 | | }; |
313 | | |
314 | | //! Base topology class used to determine the personal and global best |
315 | | /*! This pure virtual base class provides the access to the PSO state |
316 | | which the particular topology algorithm will change upon each iteration. |
317 | | */ |
318 | | class ParticleSwarmOptimization::Topology { |
319 | | friend class ParticleSwarmOptimization; |
320 | | public: |
321 | 0 | virtual ~Topology() = default; |
322 | | //! initialize state for current problem |
323 | | virtual void setSize(Size M) = 0; |
324 | | //! produce changes to PSO state for current iteration |
325 | | virtual void findSocialBest() = 0; |
326 | | protected: |
327 | | ParticleSwarmOptimization *pso_; |
328 | | std::vector<Array> *X_, *V_, *pBX_, *gBX_; |
329 | | Array *pBF_, *gBF_; |
330 | | private: |
331 | 0 | void init(ParticleSwarmOptimization *pso) { |
332 | 0 | pso_ = pso; |
333 | 0 | X_ = &pso_->X_; |
334 | 0 | V_ = &pso_->V_; |
335 | 0 | pBX_ = &pso_->pBX_; |
336 | 0 | gBX_ = &pso_->gBX_; |
337 | 0 | pBF_ = &pso_->pBF_; |
338 | 0 | gBF_ = &pso_->gBF_; |
339 | 0 | } |
340 | | }; |
341 | | |
342 | | //! Global Topology |
343 | | /* The global best as seen by each particle is the best from amongst |
344 | | all particles |
345 | | */ |
346 | | class GlobalTopology : public ParticleSwarmOptimization::Topology { |
347 | | public: |
348 | 0 | void setSize(Size M) override { M_ = M; } |
349 | 0 | void findSocialBest() override { |
350 | 0 | Real bestF = (*pBF_)[0]; |
351 | 0 | Size bestP = 0; |
352 | 0 | for (Size i = 1; i < M_; i++) { |
353 | 0 | if (bestF < (*pBF_)[i]) { |
354 | 0 | bestF = (*pBF_)[i]; |
355 | 0 | bestP = i; |
356 | 0 | } |
357 | 0 | } |
358 | 0 | Array& x = (*pBX_)[bestP]; |
359 | 0 | for (Size i = 0; i < M_; i++) { |
360 | 0 | if (i != bestP) { |
361 | 0 | (*gBX_)[i] = x; |
362 | 0 | (*gBF_)[i] = bestF; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | } |
366 | | |
367 | | private: |
368 | | Size M_; |
369 | | }; |
370 | | |
371 | | //! K-Neighbor Topology |
372 | | /* The global best as seen by each particle is the best from amongst |
373 | | the previous K and next K neighbors. For particle I, the best is |
374 | | then taken from amongst the [I - K, I + K] particles. |
375 | | */ |
376 | | class KNeighbors : public ParticleSwarmOptimization::Topology { |
377 | | public: |
378 | 0 | KNeighbors(Size K = 1) :K_(K) { |
379 | 0 | QL_REQUIRE(K > 0, "Neighbors need to be larger than 0"); |
380 | 0 | } |
381 | 0 | void setSize(Size M) override { |
382 | 0 | M_ = M; |
383 | | QL_ENSURE(K_ < M, "Number of neighbors need to be smaller than total particles in swarm"); |
384 | 0 | } |
385 | | void findSocialBest() override; |
386 | | |
387 | | private: |
388 | | Size K_, M_; |
389 | | }; |
390 | | |
391 | | //! Clubs Topology |
392 | | /* H.M. Emara, Adaptive Clubs-based Particle Swarm Optimization |
393 | | Each particle is originally assigned to a default number of clubs |
394 | | from among the total set. The best as seen by each particle is the |
395 | | best from amongst the clubs to which the particle belongs. |
396 | | Underperforming particles join more clubs randomly (up to a maximum |
397 | | number) to widen the particles that influence them, while |
398 | | overperforming particles leave clubs randomly (down to a minimum |
399 | | number) to avoid early convergence to local minima. |
400 | | */ |
401 | | class ClubsTopology : public ParticleSwarmOptimization::Topology { |
402 | | public: |
403 | | ClubsTopology(Size defaultClubs, Size totalClubs, |
404 | | Size maxClubs, Size minClubs, |
405 | | Size resetIteration, unsigned long seed = SeedGenerator::instance().get()); |
406 | | void setSize(Size M) override; |
407 | | void findSocialBest() override; |
408 | | |
409 | | private: |
410 | | Size totalClubs_, maxClubs_, minClubs_, defaultClubs_; |
411 | | Size iteration_ = 0, resetIteration_; |
412 | | Size M_; |
413 | | std::vector<std::vector<bool> > clubs4particles_; |
414 | | std::vector<std::vector<bool> > particles4clubs_; |
415 | | std::vector<Size> bestByClub_; |
416 | | std::vector<Size> worstByClub_; |
417 | | std::mt19937 generator_; |
418 | | std::uniform_int_distribution<QuantLib::Size> distribution_; |
419 | | using param_type = decltype(distribution_)::param_type; |
420 | | |
421 | | void leaveRandomClub(Size particle, Size currentClubs); |
422 | | void joinRandomClub(Size particle, Size currentClubs); |
423 | | }; |
424 | | |
425 | | } |
426 | | |
427 | | #endif |