/src/quantlib/ql/experimental/math/tcopulapolicy.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2014 Jose Aparicio |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/experimental/math/tcopulapolicy.hpp> |
21 | | #include <numeric> |
22 | | #include <algorithm> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | TCopulaPolicy::TCopulaPolicy( |
27 | | const std::vector<std::vector<Real> >& factorWeights, |
28 | | const initTraits& vals) |
29 | 0 | { |
30 | 0 | for (int tOrder : vals.tOrders) { |
31 | | // require no T is of order 2 (finite variance) |
32 | 0 | QL_REQUIRE(tOrder > 2, "Non finite variance T in latent model."); |
33 | | |
34 | 0 | distributions_.emplace_back(tOrder); |
35 | | // inverses T variaces used in normalization of the random factors |
36 | | // For low values of the T order this number is very close to zero |
37 | | // and it enters the expressions dividing them, which introduces |
38 | | // numerical errors. |
39 | 0 | varianceFactors_.push_back(std::sqrt((tOrder - 2.) / tOrder)); |
40 | 0 | } |
41 | | |
42 | 0 | for (const auto& factorWeight : factorWeights) { |
43 | | // This ensures the latent model is 'canonical' |
44 | 0 | QL_REQUIRE(vals.tOrders.size() == factorWeight.size() + 1, |
45 | | // num factors plus one |
46 | 0 | "Incompatible number of T functions and number of factors."); |
47 | | |
48 | 0 | Real factorsNorm = std::inner_product(factorWeight.begin(), factorWeight.end(), |
49 | 0 | factorWeight.begin(), Real(0.)); |
50 | 0 | QL_REQUIRE(factorsNorm < 1., |
51 | 0 | "Non normal random factor combination."); |
52 | 0 | Real idiosyncFctr = std::sqrt(1.-factorsNorm); |
53 | | |
54 | | // linear comb factors ajusted for the variance renormalization: |
55 | 0 | std::vector<Real> normFactorWeights; |
56 | 0 | normFactorWeights.reserve(factorWeight.size()); |
57 | 0 | for (Size iFactor = 0; iFactor < factorWeight.size(); iFactor++) |
58 | 0 | normFactorWeights.push_back(factorWeight[iFactor] * varianceFactors_[iFactor]); |
59 | | // idiosincratic term, all Z factors are assumed identical. |
60 | 0 | normFactorWeights.push_back(idiosyncFctr * varianceFactors_.back()); |
61 | 0 | latentVarsCumul_.emplace_back(vals.tOrders, normFactorWeights); |
62 | 0 | latentVarsInverters_.emplace_back(vals.tOrders, normFactorWeights); |
63 | 0 | } |
64 | 0 | } |
65 | | |
66 | | std::vector<Real> TCopulaPolicy::allFactorCumulInverter( |
67 | | const std::vector<Real>& probs) const |
68 | 0 | { |
69 | | #if defined(QL_EXTRA_SAFETY_CHECKS) |
70 | | QL_REQUIRE(probs.size()-latentVarsCumul_.size() |
71 | | == distributions_.size()-1, |
72 | | "Incompatible sample and latent model sizes"); |
73 | | #endif |
74 | |
|
75 | 0 | std::vector<Real> result(probs.size()); |
76 | 0 | Size indexSystemic = 0; |
77 | 0 | std::transform(probs.begin(), probs.begin() + varianceFactors_.size()-1, |
78 | 0 | result.begin(), |
79 | 0 | [&](Probability p) { return inverseCumulativeDensity(p, indexSystemic++); }); |
80 | 0 | std::transform(probs.begin() + varianceFactors_.size()-1, probs.end(), |
81 | 0 | result.begin()+ varianceFactors_.size()-1, |
82 | 0 | [&](Probability p) { return inverseCumulativeZ(p); }); |
83 | 0 | return result; |
84 | 0 | } |
85 | | |
86 | | } |