Coverage Report

Created: 2025-10-14 06:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/math/beta.hpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2003 Ferdinando Ametrano
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*! \file beta.hpp
21
    \brief Beta and beta incomplete functions
22
*/
23
24
#ifndef quantlib_math_beta_h
25
#define quantlib_math_beta_h
26
27
#include <ql/math/distributions/gammadistribution.hpp>
28
29
namespace QuantLib {
30
31
0
    inline Real betaFunction(Real z, Real w) {
32
0
    return std::exp(GammaFunction().logValue(z) +
33
0
                    GammaFunction().logValue(w) -
34
0
                    GammaFunction().logValue(z+w));
35
0
    }
36
37
    Real betaContinuedFraction(Real a,
38
                               Real b,
39
                               Real x,
40
                               Real accuracy = 1e-16,
41
                               Integer maxIteration = 100);
42
43
    //! Incomplete Beta function
44
    /*! Incomplete Beta function
45
46
        The implementation of the algorithm was inspired by
47
        "Numerical Recipes in C", 2nd edition,
48
        Press, Teukolsky, Vetterling, Flannery, chapter 6
49
    */
50
    Real incompleteBetaFunction(Real a,
51
                                Real b,
52
                                Real x,
53
                                Real accuracy = 1e-16,
54
                                Integer maxIteration = 100);
55
56
}
57
58
59
#endif