Coverage Report

Created: 2025-10-14 06:32

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/methods/finitedifferences/solvers/fdm3dimsolver.cpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2011 Klaus Spanderen
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
#include <ql/math/interpolations/bicubicsplineinterpolation.hpp>
21
#include <ql/math/interpolations/cubicinterpolation.hpp>
22
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
23
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
24
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
25
#include <ql/methods/finitedifferences/solvers/fdm3dimsolver.hpp>
26
#include <ql/methods/finitedifferences/stepconditions/fdmsnapshotcondition.hpp>
27
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
28
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
29
#include <utility>
30
31
namespace QuantLib {
32
33
    Fdm3DimSolver::Fdm3DimSolver(const FdmSolverDesc& solverDesc,
34
                                 const FdmSchemeDesc& schemeDesc,
35
                                 ext::shared_ptr<FdmLinearOpComposite> op)
36
0
    : solverDesc_(solverDesc), schemeDesc_(schemeDesc), op_(std::move(op)),
37
0
      thetaCondition_(ext::make_shared<FdmSnapshotCondition>(
38
0
          0.99 * std::min(1.0 / 365.0,
39
0
                          solverDesc.condition->stoppingTimes().empty() ?
40
0
                              solverDesc.maturity :
41
0
                              solverDesc.condition->stoppingTimes().front()))),
42
0
      conditions_(FdmStepConditionComposite::joinConditions(thetaCondition_, solverDesc.condition)),
43
0
      initialValues_(solverDesc.mesher->layout()->size()),
44
0
      resultValues_(
45
0
          solverDesc.mesher->layout()->dim()[2],
46
0
          Matrix(solverDesc.mesher->layout()->dim()[1], solverDesc.mesher->layout()->dim()[0])),
47
0
      interpolation_(solverDesc.mesher->layout()->dim()[2]) {
48
49
0
        x_.reserve(solverDesc.mesher->layout()->dim()[0]);
50
0
        y_.reserve(solverDesc.mesher->layout()->dim()[1]);
51
0
        z_.reserve(solverDesc.mesher->layout()->dim()[2]);
52
53
0
        for (const auto& iter : *solverDesc.mesher->layout()) {
54
0
            initialValues_[iter.index()]
55
0
               = solverDesc.calculator->avgInnerValue(iter,
56
0
                                                      solverDesc.maturity);
57
58
59
0
            if ((iter.coordinates()[1] == 0U) && (iter.coordinates()[2] == 0U)) {
60
0
                x_.push_back(solverDesc.mesher->location(iter, 0));
61
0
            }
62
0
            if ((iter.coordinates()[0] == 0U) && (iter.coordinates()[2] == 0U)) {
63
0
                y_.push_back(solverDesc.mesher->location(iter, 1));
64
0
            }
65
0
            if ((iter.coordinates()[0] == 0U) && (iter.coordinates()[1] == 0U)) {
66
0
                z_.push_back(solverDesc.mesher->location(iter, 2));
67
0
            }
68
0
        }
69
0
    }
Unexecuted instantiation: QuantLib::Fdm3DimSolver::Fdm3DimSolver(QuantLib::FdmSolverDesc const&, QuantLib::FdmSchemeDesc const&, boost::shared_ptr<QuantLib::FdmLinearOpComposite>)
Unexecuted instantiation: QuantLib::Fdm3DimSolver::Fdm3DimSolver(QuantLib::FdmSolverDesc const&, QuantLib::FdmSchemeDesc const&, boost::shared_ptr<QuantLib::FdmLinearOpComposite>)
70
71
0
    void Fdm3DimSolver::performCalculations() const {
72
0
        Array rhs(initialValues_.size());
73
0
        std::copy(initialValues_.begin(), initialValues_.end(), rhs.begin());
74
75
0
        FdmBackwardSolver(op_, solverDesc_.bcSet, conditions_, schemeDesc_)
76
0
             .rollback(rhs, solverDesc_.maturity, 0.0,
77
0
                       solverDesc_.timeSteps, solverDesc_.dampingSteps);
78
79
0
        for (Size i=0; i < z_.size(); ++i) {
80
0
            std::copy(rhs.begin()+i    *y_.size()*x_.size(),
81
0
                      rhs.begin()+(i+1)*y_.size()*x_.size(),
82
0
                      resultValues_[i].begin());
83
84
0
            interpolation_[i] = ext::make_shared<BicubicSpline>(x_.begin(), x_.end(),
85
0
                                  y_.begin(), y_.end(),
86
0
                                  resultValues_[i]);
87
0
        }
88
0
    }
89
90
0
    Real Fdm3DimSolver::interpolateAt(Real x, Real y, Rate z) const {
91
0
        calculate();
92
93
0
        Array zArray(z_.size());
94
0
        for (Size i=0; i < z_.size(); ++i) {
95
0
            zArray[i] = (*interpolation_[i])(x, y);
96
0
        }
97
0
        return MonotonicCubicNaturalSpline(z_.begin(), z_.end(),
98
0
                                           zArray.begin())(z);
99
0
    }
100
101
0
    Real Fdm3DimSolver::thetaAt(Real x, Real y, Rate z) const {
102
0
        if (conditions_->stoppingTimes().front() == 0.0)
103
0
            return Null<Real>();
104
105
0
        calculate();
106
107
0
        const Array& rhs = thetaCondition_->getValues();
108
0
        std::vector<Matrix> thetaValues(z_.size(), Matrix(y_.size(),x_.size()));
109
0
        for (Size i=0; i < z_.size(); ++i) {
110
0
            std::copy(rhs.begin()+i    *y_.size()*x_.size(),
111
0
                      rhs.begin()+(i+1)*y_.size()*x_.size(),
112
0
                      thetaValues[i].begin());
113
0
        }
114
115
0
        Array zArray(z_.size());
116
0
        for (Size i=0; i < z_.size(); ++i) {
117
0
            zArray[i] = BicubicSpline(x_.begin(),x_.end(),
118
0
                                      y_.begin(),y_.end(), thetaValues[i])(x,y);
119
0
        }
120
121
0
        return (MonotonicCubicNaturalSpline(z_.begin(), z_.end(),
122
0
                                            zArray.begin())(z)
123
0
                - interpolateAt(x, y, z)) / thetaCondition_->getTime();
124
0
    }
125
}