/src/quantlib/ql/math/matrixutilities/factorreduction.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2009 Jose Aparicio |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/math/matrixutilities/factorreduction.hpp> |
21 | | #include <ql/math/matrixutilities/symmetricschurdecomposition.hpp> |
22 | | #include <vector> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | std::vector<Real> factorReduction(Matrix mtrx, |
27 | 0 | Size maxIters) { |
28 | 0 | static Real tolerance = 1.e-6; |
29 | |
|
30 | 0 | QL_REQUIRE(mtrx.rows() == mtrx.columns(), |
31 | 0 | "Input matrix is not square"); |
32 | | |
33 | 0 | const Size n = mtrx.columns(); |
34 | |
|
35 | | #if defined(QL_EXTRA_SAFETY_CHECKS) |
36 | | // check symmetry |
37 | | for (Size iRow=0; iRow<mtrx.rows(); iRow++) |
38 | | for (Size iCol=0; iCol<iRow; iCol++) |
39 | | QL_REQUIRE(mtrx[iRow][iCol] == mtrx[iCol][iRow], |
40 | | "input matrix is not symmetric"); |
41 | | QL_REQUIRE(*std::max_element(mtrx.begin(), mtrx.end()) <=1 && |
42 | | *std::min_element(mtrx.begin(), mtrx.end()) >=-1, |
43 | | "input matrix data is not correlation data"); |
44 | | #endif |
45 | | |
46 | | // Initial guess value |
47 | 0 | std::vector<Real> previousCorrels(n, 0.); |
48 | 0 | for(Size iCol=0; iCol<n; iCol++) { |
49 | 0 | for(Size iRow=0; iRow<n; iRow++) |
50 | 0 | previousCorrels[iCol] += |
51 | 0 | mtrx[iRow][iCol] * mtrx[iRow][iCol]; |
52 | 0 | previousCorrels[iCol] = |
53 | 0 | std::sqrt((previousCorrels[iCol]-1.)/(n-1.)); |
54 | 0 | } |
55 | | |
56 | | // iterative solution |
57 | 0 | Size iteration = 0; |
58 | 0 | Real distance; |
59 | 0 | do { |
60 | | // patch Matrix diagonal |
61 | 0 | for(Size iCol=0; iCol<n; iCol++) |
62 | 0 | mtrx[iCol][iCol] = |
63 | 0 | previousCorrels[iCol]; |
64 | | // compute eigenvector decomposition |
65 | 0 | SymmetricSchurDecomposition ssDec(mtrx); |
66 | | //const Matrix& eigenVect = ssDec.eigenvectors(); |
67 | 0 | const Array& eigenVals = ssDec.eigenvalues(); |
68 | 0 | Array::const_iterator itMaxEval = |
69 | 0 | std::max_element(eigenVals.begin(), eigenVals.end()); |
70 | | // We do not need the max value, only the position of the |
71 | | // corresponding eigenvector |
72 | 0 | Size iMax = std::distance(eigenVals.begin(), itMaxEval); |
73 | 0 | std::vector<Real> newCorrels, distances; |
74 | 0 | for(Size iCol=0; iCol<n; iCol++) { |
75 | 0 | Real thisCorrel = mtrx[iMax][iCol]; |
76 | 0 | newCorrels.push_back(thisCorrel); |
77 | | // strictly is: |
78 | | // abs(\sqrt{\rho}- \sqrt{\rho_{old}})/\sqrt{\rho_{old}} |
79 | 0 | distances.push_back( |
80 | 0 | std::abs(thisCorrel - previousCorrels[iCol])/ |
81 | 0 | previousCorrels[iCol]); |
82 | 0 | } |
83 | 0 | previousCorrels = newCorrels; |
84 | 0 | distance = *std::max_element(distances.begin(), distances.end()); |
85 | 0 | }while(distance > tolerance && ++iteration <= maxIters ); |
86 | | |
87 | | // test it did not go up to the max iteration and the matrix can |
88 | | // be reduced to one factor. |
89 | 0 | QL_REQUIRE(iteration < maxIters, |
90 | 0 | "convergence not reached after " << |
91 | 0 | iteration << " iterations"); |
92 | | |
93 | | #if defined(QL_EXTRA_SAFETY_CHECKS) |
94 | | QL_REQUIRE(*std::max_element(previousCorrels.begin(), |
95 | | previousCorrels.end()) <=1 && |
96 | | *std::min_element(previousCorrels.begin(), |
97 | | previousCorrels.end()) >=-1, |
98 | | "matrix can not be decomposed to a single factor dependence"); |
99 | | #endif |
100 | | |
101 | 0 | return previousCorrels; |
102 | 0 | } |
103 | | |
104 | | } |