/src/quantlib/ql/math/optimization/leastsquare.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
5 | | Copyright (C) 2005 StatPro Italia srl |
6 | | |
7 | | This file is part of QuantLib, a free-software/open-source library |
8 | | for financial quantitative analysts and developers - http://quantlib.org/ |
9 | | |
10 | | QuantLib is free software: you can redistribute it and/or modify it |
11 | | under the terms of the QuantLib license. You should have received a |
12 | | copy of the license along with this program; if not, please email |
13 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
14 | | <https://www.quantlib.org/license.shtml>. |
15 | | |
16 | | This program is distributed in the hope that it will be useful, but WITHOUT |
17 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
18 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
19 | | */ |
20 | | |
21 | | #include <ql/math/optimization/conjugategradient.hpp> |
22 | | #include <ql/math/optimization/leastsquare.hpp> |
23 | | #include <ql/math/optimization/problem.hpp> |
24 | | #include <utility> |
25 | | |
26 | | namespace QuantLib { |
27 | | |
28 | 0 | Real LeastSquareFunction::value(const Array & x) const { |
29 | | // size of target and function to fit vectors |
30 | 0 | Array target(lsp_.size()), fct2fit(lsp_.size()); |
31 | | // compute its values |
32 | 0 | lsp_.targetAndValue(x, target, fct2fit); |
33 | | // do the difference |
34 | 0 | Array diff = target - fct2fit; |
35 | | // and compute the scalar product (square of the norm) |
36 | 0 | return DotProduct(diff, diff); |
37 | 0 | } |
38 | | |
39 | 0 | Array LeastSquareFunction::values(const Array& x) const { |
40 | | // size of target and function to fit vectors |
41 | 0 | Array target(lsp_.size()), fct2fit(lsp_.size()); |
42 | | // compute its values |
43 | 0 | lsp_.targetAndValue(x, target, fct2fit); |
44 | | // do the difference |
45 | 0 | Array diff = target - fct2fit; |
46 | 0 | return diff*diff; |
47 | 0 | } |
48 | | |
49 | | void LeastSquareFunction::gradient(Array& grad_f, |
50 | 0 | const Array& x) const { |
51 | | // size of target and function to fit vectors |
52 | 0 | Array target (lsp_.size ()), fct2fit (lsp_.size ()); |
53 | | // size of gradient matrix |
54 | 0 | Matrix grad_fct2fit (lsp_.size (), x.size ()); |
55 | | // compute its values |
56 | 0 | lsp_.targetValueAndGradient(x, grad_fct2fit, target, fct2fit); |
57 | | // do the difference |
58 | 0 | Array diff = target - fct2fit; |
59 | | // compute derivative |
60 | 0 | grad_f = -2.0*(transpose(grad_fct2fit)*diff); |
61 | 0 | } |
62 | | |
63 | | Real LeastSquareFunction::valueAndGradient(Array& grad_f, |
64 | 0 | const Array& x) const { |
65 | | // size of target and function to fit vectors |
66 | 0 | Array target(lsp_.size()), fct2fit(lsp_.size()); |
67 | | // size of gradient matrix |
68 | 0 | Matrix grad_fct2fit(lsp_.size(), x.size()); |
69 | | // compute its values |
70 | 0 | lsp_.targetValueAndGradient(x, grad_fct2fit, target, fct2fit); |
71 | | // do the difference |
72 | 0 | Array diff = target - fct2fit; |
73 | | // compute derivative |
74 | 0 | grad_f = -2.0*(transpose(grad_fct2fit)*diff); |
75 | | // and compute the scalar product (square of the norm) |
76 | 0 | return DotProduct(diff, diff); |
77 | 0 | } |
78 | | |
79 | | NonLinearLeastSquare::NonLinearLeastSquare(Constraint& c, |
80 | | Real accuracy, |
81 | | Size maxiter) |
82 | 0 | : exitFlag_(-1), accuracy_ (accuracy), maxIterations_ (maxiter), |
83 | 0 | om_ (ext::shared_ptr<OptimizationMethod>(new ConjugateGradient())), |
84 | 0 | c_(c) |
85 | 0 | {} |
86 | | |
87 | | NonLinearLeastSquare::NonLinearLeastSquare(Constraint& c, |
88 | | Real accuracy, |
89 | | Size maxiter, |
90 | | ext::shared_ptr<OptimizationMethod> om) |
91 | 0 | : exitFlag_(-1), accuracy_(accuracy), maxIterations_(maxiter), om_(std::move(om)), c_(c) {} |
92 | | |
93 | 0 | Array& NonLinearLeastSquare::perform(LeastSquareProblem& lsProblem) { |
94 | 0 | Real eps = accuracy_; |
95 | | |
96 | | // wrap the least square problem in an optimization function |
97 | 0 | LeastSquareFunction lsf(lsProblem); |
98 | | |
99 | | // define optimization problem |
100 | 0 | Problem P(lsf, c_, initialValue_); |
101 | | |
102 | | // minimize |
103 | 0 | EndCriteria ec(maxIterations_, |
104 | 0 | std::min(static_cast<Size>(maxIterations_/2), static_cast<Size>(100)), |
105 | 0 | eps, eps, eps); |
106 | 0 | exitFlag_ = om_->minimize(P, ec); |
107 | | |
108 | | // summarize results of minimization |
109 | | // nbIterations_ = om_->iterationNumber(); |
110 | |
|
111 | 0 | results_ = P.currentValue(); |
112 | 0 | resnorm_ = P.functionValue(); |
113 | 0 | bestAccuracy_ = P.functionValue(); |
114 | |
|
115 | 0 | return results_; |
116 | 0 | } |
117 | | |
118 | | } |