/src/quantlib/ql/methods/finitedifferences/solvers/fdm2dimsolver.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2010 Klaus Spanderen |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/math/interpolations/bicubicsplineinterpolation.hpp> |
21 | | #include <ql/methods/finitedifferences/finitedifferencemodel.hpp> |
22 | | #include <ql/methods/finitedifferences/meshers/fdmmesher.hpp> |
23 | | #include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp> |
24 | | #include <ql/methods/finitedifferences/solvers/fdm2dimsolver.hpp> |
25 | | #include <ql/methods/finitedifferences/stepconditions/fdmsnapshotcondition.hpp> |
26 | | #include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp> |
27 | | #include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp> |
28 | | #include <utility> |
29 | | |
30 | | namespace QuantLib { |
31 | | |
32 | | Fdm2DimSolver::Fdm2DimSolver(const FdmSolverDesc& solverDesc, |
33 | | const FdmSchemeDesc& schemeDesc, |
34 | | ext::shared_ptr<FdmLinearOpComposite> op) |
35 | 0 | : solverDesc_(solverDesc), schemeDesc_(schemeDesc), op_(std::move(op)), |
36 | 0 | thetaCondition_(ext::make_shared<FdmSnapshotCondition>( |
37 | 0 | 0.99 * std::min(1.0 / 365.0, |
38 | 0 | solverDesc.condition->stoppingTimes().empty() ? |
39 | 0 | solverDesc.maturity : |
40 | 0 | solverDesc.condition->stoppingTimes().front()))), |
41 | 0 | conditions_(FdmStepConditionComposite::joinConditions(thetaCondition_, solverDesc.condition)), |
42 | 0 | initialValues_(solverDesc.mesher->layout()->size()), |
43 | 0 | resultValues_(solverDesc.mesher->layout()->dim()[1], solverDesc.mesher->layout()->dim()[0]) { |
44 | |
|
45 | 0 | x_.reserve(solverDesc.mesher->layout()->dim()[0]); |
46 | 0 | y_.reserve(solverDesc.mesher->layout()->dim()[1]); |
47 | |
|
48 | 0 | for (const auto& iter : *solverDesc.mesher->layout()) { |
49 | 0 | initialValues_[iter.index()] |
50 | 0 | = solverDesc_.calculator->avgInnerValue(iter, |
51 | 0 | solverDesc.maturity); |
52 | |
|
53 | 0 | if (iter.coordinates()[1] == 0U) { |
54 | 0 | x_.push_back(solverDesc.mesher->location(iter, 0)); |
55 | 0 | } |
56 | 0 | if (iter.coordinates()[0] == 0U) { |
57 | 0 | y_.push_back(solverDesc.mesher->location(iter, 1)); |
58 | 0 | } |
59 | 0 | } |
60 | 0 | } Unexecuted instantiation: QuantLib::Fdm2DimSolver::Fdm2DimSolver(QuantLib::FdmSolverDesc const&, QuantLib::FdmSchemeDesc const&, boost::shared_ptr<QuantLib::FdmLinearOpComposite>) Unexecuted instantiation: QuantLib::Fdm2DimSolver::Fdm2DimSolver(QuantLib::FdmSolverDesc const&, QuantLib::FdmSchemeDesc const&, boost::shared_ptr<QuantLib::FdmLinearOpComposite>) |
61 | | |
62 | | |
63 | 0 | void Fdm2DimSolver::performCalculations() const { |
64 | 0 | Array rhs(initialValues_.size()); |
65 | 0 | std::copy(initialValues_.begin(), initialValues_.end(), rhs.begin()); |
66 | |
|
67 | 0 | FdmBackwardSolver(op_, solverDesc_.bcSet, conditions_, schemeDesc_) |
68 | 0 | .rollback(rhs, solverDesc_.maturity, 0.0, |
69 | 0 | solverDesc_.timeSteps, solverDesc_.dampingSteps); |
70 | |
|
71 | 0 | std::copy(rhs.begin(), rhs.end(), resultValues_.begin()); |
72 | 0 | interpolation_ = ext::make_shared<BicubicSpline>(x_.begin(), x_.end(), |
73 | 0 | y_.begin(), y_.end(), |
74 | 0 | resultValues_); |
75 | 0 | } |
76 | | |
77 | 0 | Real Fdm2DimSolver::interpolateAt(Real x, Real y) const { |
78 | 0 | calculate(); |
79 | 0 | return (*interpolation_)(x, y); |
80 | 0 | } |
81 | | |
82 | 0 | Real Fdm2DimSolver::thetaAt(Real x, Real y) const { |
83 | 0 | if (conditions_->stoppingTimes().front() == 0.0) |
84 | 0 | return Null<Real>(); |
85 | | |
86 | 0 | calculate(); |
87 | 0 | Matrix thetaValues(resultValues_.rows(), resultValues_.columns()); |
88 | |
|
89 | 0 | const Array& rhs = thetaCondition_->getValues(); |
90 | 0 | std::copy(rhs.begin(), rhs.end(), thetaValues.begin()); |
91 | |
|
92 | 0 | return (BicubicSpline(x_.begin(), x_.end(), y_.begin(), y_.end(), |
93 | 0 | thetaValues)(x, y) - interpolateAt(x, y)) |
94 | 0 | / thetaCondition_->getTime(); |
95 | 0 | } |
96 | | |
97 | | |
98 | 0 | Real Fdm2DimSolver::derivativeX(Real x, Real y) const { |
99 | 0 | calculate(); |
100 | 0 | return interpolation_->derivativeX(x, y); |
101 | 0 | } |
102 | | |
103 | 0 | Real Fdm2DimSolver::derivativeY(Real x, Real y) const { |
104 | 0 | calculate(); |
105 | 0 | return interpolation_->derivativeY(x, y); |
106 | 0 | } |
107 | | |
108 | 0 | Real Fdm2DimSolver::derivativeXX(Real x, Real y) const { |
109 | 0 | calculate(); |
110 | 0 | return interpolation_->secondDerivativeX(x, y); |
111 | 0 | } |
112 | | |
113 | 0 | Real Fdm2DimSolver::derivativeYY(Real x, Real y) const { |
114 | 0 | calculate(); |
115 | 0 | return interpolation_->secondDerivativeY(x, y); |
116 | 0 | } |
117 | | |
118 | 0 | Real Fdm2DimSolver::derivativeXY(Real x, Real y) const { |
119 | 0 | calculate(); |
120 | 0 | return interpolation_->derivativeXY(x, y); |
121 | 0 | } |
122 | | |
123 | | } |