Coverage Report

Created: 2025-11-04 06:12

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/termstructures/volatility/abcdcalibration.cpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2006, 2015 Ferdinando Ametrano
5
 Copyright (C) 2006 Cristina Duminuco
6
 Copyright (C) 2005, 2006 Klaus Spanderen
7
 Copyright (C) 2007 Giorgio Facchinetti
8
 Copyright (C) 2015 Paolo Mazzocchi
9
10
 This file is part of QuantLib, a free-software/open-source library
11
 for financial quantitative analysts and developers - http://quantlib.org/
12
13
 QuantLib is free software: you can redistribute it and/or modify it
14
 under the terms of the QuantLib license.  You should have received a
15
 copy of the license along with this program; if not, please email
16
 <quantlib-dev@lists.sf.net>. The license is also available online at
17
 <https://www.quantlib.org/license.shtml>.
18
19
 This program is distributed in the hope that it will be useful, but WITHOUT
20
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
21
 FOR A PARTICULAR PURPOSE.  See the license for more details.
22
*/
23
24
#include <ql/math/distributions/normaldistribution.hpp>
25
#include <ql/math/interpolations/abcdinterpolation.hpp>
26
#include <ql/math/optimization/constraint.hpp>
27
#include <ql/math/optimization/levenbergmarquardt.hpp>
28
#include <ql/math/optimization/method.hpp>
29
#include <ql/pricingengines/blackformula.hpp>
30
#include <ql/termstructures/volatility/abcd.hpp>
31
#include <ql/termstructures/volatility/abcdcalibration.hpp>
32
#include <utility>
33
34
namespace QuantLib {
35
36
    // to constrained <- from unconstrained
37
0
    Array AbcdCalibration::AbcdParametersTransformation::direct(const Array& x) const {
38
0
        y_[1] = x[1];
39
0
        y_[2] = std::exp(x[2]);
40
0
        y_[3] = std::exp(x[3]);
41
0
        y_[0] = std::exp(x[0]) - y_[3];
42
0
        return y_;
43
0
    }
44
45
    // to unconstrained <- from constrained
46
0
    Array AbcdCalibration::AbcdParametersTransformation::inverse(const Array& x) const {
47
0
        y_[1] = x[1];
48
0
        y_[2] = std::log(x[2]);
49
0
        y_[3] = std::log(x[3]);
50
0
        y_[0] = std::log(x[0] + x[3]);
51
0
        return y_;
52
0
    }
53
54
    // to constrained <- from unconstrained
55
56
    AbcdCalibration::AbcdCalibration(const std::vector<Real>& t,
57
                                     const std::vector<Real>& blackVols,
58
                                     Real a,
59
                                     Real b,
60
                                     Real c,
61
                                     Real d,
62
                                     bool aIsFixed,
63
                                     bool bIsFixed,
64
                                     bool cIsFixed,
65
                                     bool dIsFixed,
66
                                     bool vegaWeighted,
67
                                     ext::shared_ptr<EndCriteria> endCriteria,
68
                                     ext::shared_ptr<OptimizationMethod> optMethod)
69
0
    : aIsFixed_(aIsFixed), bIsFixed_(bIsFixed), cIsFixed_(cIsFixed), dIsFixed_(dIsFixed), a_(a),
70
0
      b_(b), c_(c), d_(d), abcdEndCriteria_(EndCriteria::None),
71
0
      endCriteria_(std::move(endCriteria)), optMethod_(std::move(optMethod)),
72
0
      weights_(blackVols.size(), 1.0 / blackVols.size()), vegaWeighted_(vegaWeighted), times_(t),
73
0
      blackVols_(blackVols) {
74
75
0
        AbcdMathFunction::validate(a, b, c, d);
76
77
0
        QL_REQUIRE(blackVols.size()==t.size(),
78
0
                       "mismatch between number of times (" << t.size() <<
79
0
                       ") and blackVols (" << blackVols.size() << ")");
80
81
        // if no optimization method or endCriteria is provided, we provide one
82
0
        if (!optMethod_) {
83
0
            Real epsfcn = 1.0e-8;
84
0
            Real xtol = 1.0e-8;
85
0
            Real gtol = 1.0e-8;
86
0
            bool useCostFunctionsJacobian = false;
87
0
            optMethod_ = ext::shared_ptr<OptimizationMethod>(new
88
0
                LevenbergMarquardt(epsfcn, xtol, gtol, useCostFunctionsJacobian));
89
0
        }
90
0
        if (!endCriteria_) {
91
0
            Size maxIterations = 10000;
92
0
            Size maxStationaryStateIterations = 1000;
93
0
            Real rootEpsilon = 1.0e-8;
94
0
            Real functionEpsilon = 0.3e-4;     // Why 0.3e-4 ?
95
0
            Real gradientNormEpsilon = 0.3e-4; // Why 0.3e-4 ?
96
0
            endCriteria_ = ext::make_shared<EndCriteria>(maxIterations, maxStationaryStateIterations,
97
0
                            rootEpsilon, functionEpsilon, gradientNormEpsilon);
98
0
        }
99
0
    }
100
101
0
    void AbcdCalibration::compute() {
102
0
        if (vegaWeighted_) {
103
0
            Real weightsSum = 0.0;
104
0
            for (Size i=0; i<times_.size() ; i++) {
105
0
                Real stdDev = std::sqrt(blackVols_[i]* blackVols_[i]* times_[i]);
106
                // when strike==forward, the blackFormulaStdDevDerivative becomes
107
0
                weights_[i] = CumulativeNormalDistribution().derivative(.5*stdDev);
108
0
                weightsSum += weights_[i];
109
0
            }
110
            // weight normalization
111
0
            for (Size i=0; i<times_.size() ; i++) {
112
0
                weights_[i] /= weightsSum;
113
0
            }
114
0
        }
115
116
        // there is nothing to optimize
117
0
        if (aIsFixed_ && bIsFixed_ && cIsFixed_ && dIsFixed_) {
118
0
            abcdEndCriteria_ = EndCriteria::None;
119
            //error_ = interpolationError();
120
            //maxError_ = interpolationMaxError();
121
0
            return;
122
0
        } else {
123
124
0
            AbcdError costFunction(this);
125
0
            transformation_ = ext::shared_ptr<ParametersTransformation>(new
126
0
                AbcdParametersTransformation);
127
128
0
            Array guess(4);
129
0
            guess[0] = a_;
130
0
            guess[1] = b_;
131
0
            guess[2] = c_;
132
0
            guess[3] = d_;
133
134
0
            std::vector<bool> parameterAreFixed(4);
135
0
            parameterAreFixed[0] = aIsFixed_;
136
0
            parameterAreFixed[1] = bIsFixed_;
137
0
            parameterAreFixed[2] = cIsFixed_;
138
0
            parameterAreFixed[3] = dIsFixed_;
139
140
0
            Array inversedTransformatedGuess(transformation_->inverse(guess));
141
142
0
            ProjectedCostFunction projectedAbcdCostFunction(costFunction,
143
0
                            inversedTransformatedGuess, parameterAreFixed);
144
145
0
            Array projectedGuess
146
0
                (projectedAbcdCostFunction.project(inversedTransformatedGuess));
147
148
0
            NoConstraint constraint;
149
0
            Problem problem(projectedAbcdCostFunction, constraint, projectedGuess);
150
0
            abcdEndCriteria_ = optMethod_->minimize(problem, *endCriteria_);
151
0
            Array projectedResult(problem.currentValue());
152
0
            Array transfResult(projectedAbcdCostFunction.include(projectedResult));
153
154
0
            Array result = transformation_->direct(transfResult);
155
0
            AbcdMathFunction::validate(a_, b_, c_, d_);
156
0
            a_ = result[0];
157
0
            b_ = result[1];
158
0
            c_ = result[2];
159
0
            d_ = result[3];
160
161
0
        }
162
0
    }
163
164
0
    Real AbcdCalibration::value(Real x) const {
165
0
        return abcdBlackVolatility(x,a_,b_,c_,d_);
166
0
    }
167
168
    std::vector<Real> AbcdCalibration::k(const std::vector<Real>& t,
169
0
                                         const std::vector<Real>& blackVols) const {
170
0
        QL_REQUIRE(blackVols.size()==t.size(),
171
0
               "mismatch between number of times (" << t.size() <<
172
0
               ") and blackVols (" << blackVols.size() << ")");
173
0
        std::vector<Real> k(t.size());
174
0
        for (Size i=0; i<t.size() ; i++) {
175
0
            k[i]=blackVols[i]/value(t[i]);
176
0
        }
177
0
        return k;
178
0
    }
179
180
0
    Real AbcdCalibration::error() const {
181
0
        Size n = times_.size();
182
0
        Real error, squaredError = 0.0;
183
0
        for (Size i=0; i<times_.size() ; i++) {
184
0
            error = (value(times_[i]) - blackVols_[i]);
185
0
            squaredError += error * error * weights_[i];
186
0
        }
187
0
        return std::sqrt(n*squaredError/(n-1));
188
0
    }
189
190
0
    Real AbcdCalibration::maxError() const {
191
0
        Real error, maxError = QL_MIN_REAL;
192
0
        for (Size i=0; i<times_.size() ; i++) {
193
0
            error = std::fabs(value(times_[i]) - blackVols_[i]);
194
0
            maxError = std::max(maxError, error);
195
0
        }
196
0
        return maxError;
197
0
    }
198
199
    // calculate weighted differences
200
0
    Array AbcdCalibration::errors() const {
201
0
        Array results(times_.size());
202
0
        for (Size i=0; i<times_.size() ; i++) {
203
0
            results[i] = (value(times_[i]) - blackVols_[i])* std::sqrt(weights_[i]);
204
0
        }
205
0
        return results;
206
0
    }
207
208
0
    EndCriteria::Type AbcdCalibration::endCriteria() const{
209
0
        return abcdEndCriteria_;
210
0
    }
211
212
}