/src/quantlib/ql/experimental/basismodels/tenoroptionletvts.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2018 Sebastian Schlenkrich |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | /*! \file tenoroptionletvts.cpp |
21 | | \brief caplet volatility term structure based on volatility transformation |
22 | | */ |
23 | | |
24 | | #include <ql/exercise.hpp> |
25 | | #include <ql/experimental/basismodels/tenoroptionletvts.hpp> |
26 | | #include <ql/indexes/iborindex.hpp> |
27 | | #include <ql/math/rounding.hpp> |
28 | | #include <ql/pricingengines/swap/discountingswapengine.hpp> |
29 | | #include <ql/time/dategenerationrule.hpp> |
30 | | #include <ql/time/schedule.hpp> |
31 | | #include <utility> |
32 | | |
33 | | |
34 | | namespace QuantLib { |
35 | | |
36 | | TenorOptionletVTS::TenorOptionletVTS(const Handle<OptionletVolatilityStructure>& baseVTS, |
37 | | ext::shared_ptr<IborIndex> baseIndex, |
38 | | ext::shared_ptr<IborIndex> targIndex, |
39 | | ext::shared_ptr<CorrelationStructure> correlation) |
40 | 0 | : OptionletVolatilityStructure(baseVTS->referenceDate(), |
41 | 0 | baseVTS->calendar(), |
42 | 0 | baseVTS->businessDayConvention(), |
43 | 0 | baseVTS->dayCounter()), |
44 | 0 | baseVTS_(baseVTS), baseIndex_(std::move(baseIndex)), targIndex_(std::move(targIndex)), |
45 | 0 | correlation_(std::move(correlation)) { |
46 | 0 | QL_REQUIRE(baseIndex_->tenor().frequency() % targIndex_->tenor().frequency() == 0, |
47 | 0 | "Base index frequency must be a multiple of target tenor frequency"); |
48 | 0 | } Unexecuted instantiation: QuantLib::TenorOptionletVTS::TenorOptionletVTS(QuantLib::Handle<QuantLib::OptionletVolatilityStructure> const&, boost::shared_ptr<QuantLib::IborIndex>, boost::shared_ptr<QuantLib::IborIndex>, boost::shared_ptr<QuantLib::TenorOptionletVTS::CorrelationStructure>) Unexecuted instantiation: QuantLib::TenorOptionletVTS::TenorOptionletVTS(QuantLib::Handle<QuantLib::OptionletVolatilityStructure> const&, boost::shared_ptr<QuantLib::IborIndex>, boost::shared_ptr<QuantLib::IborIndex>, boost::shared_ptr<QuantLib::TenorOptionletVTS::CorrelationStructure>) |
49 | | |
50 | | |
51 | | TenorOptionletVTS::TenorOptionletSmileSection::TenorOptionletSmileSection( |
52 | | const TenorOptionletVTS& volTS, const Time optionTime) |
53 | 0 | : SmileSection(optionTime, volTS.baseVTS_->dayCounter(), Normal, 0.0), |
54 | 0 | correlation_(volTS.correlation_) { |
55 | | // we assume that long (target) tenor is a multiple of short (base) tenor |
56 | | // first we need the long tenor start and end date |
57 | 0 | Real oneDayAsYear = |
58 | 0 | volTS.dayCounter().yearFraction(volTS.referenceDate(), volTS.referenceDate() + 1); |
59 | 0 | Date exerciseDate = |
60 | 0 | volTS.referenceDate() + ((BigInteger)ClosestRounding(0)(optionTime / oneDayAsYear)); |
61 | 0 | Date effectiveDate = volTS.baseIndex_->fixingCalendar().advance( |
62 | 0 | exerciseDate, volTS.baseIndex_->fixingDays() * Days); |
63 | 0 | Date maturityDate = volTS.baseIndex_->fixingCalendar().advance( |
64 | 0 | effectiveDate, volTS.targIndex_->tenor(), Unadjusted, false); |
65 | | // now we can set up the short tenor schedule |
66 | 0 | Schedule baseFloatSchedule(effectiveDate, maturityDate, volTS.baseIndex_->tenor(), |
67 | 0 | volTS.baseIndex_->fixingCalendar(), ModifiedFollowing, |
68 | 0 | Unadjusted, DateGeneration::Backward, false); |
69 | | // set up scalar attributes |
70 | 0 | fraRateTarg_ = volTS.targIndex_->fixing(exerciseDate); |
71 | 0 | Time yfTarg = volTS.targIndex_->dayCounter().yearFraction(effectiveDate, maturityDate); |
72 | 0 | for (Size k = 0; k < baseFloatSchedule.dates().size() - 1; ++k) { |
73 | 0 | Date startDate = baseFloatSchedule.dates()[k]; |
74 | 0 | Date fixingDate = volTS.baseIndex_->fixingCalendar().advance( |
75 | 0 | startDate, (-1 * volTS.baseIndex_->fixingDays()) * Days); |
76 | 0 | Time yearFrac = volTS.baseIndex_->dayCounter().yearFraction( |
77 | 0 | baseFloatSchedule.dates()[k], baseFloatSchedule.dates()[k + 1]); |
78 | | // set up vector attributes |
79 | 0 | baseSmileSection_.push_back(volTS.baseVTS_->smileSection(fixingDate, true)); |
80 | 0 | startTimeBase_.push_back( |
81 | 0 | volTS.dayCounter().yearFraction(volTS.referenceDate(), startDate)); |
82 | 0 | fraRateBase_.push_back(volTS.baseIndex_->fixing(fixingDate)); |
83 | 0 | v_.push_back(yearFrac / yfTarg * (1.0 + yfTarg * fraRateTarg_) / |
84 | 0 | (1.0 + yearFrac * fraRateBase_[k])); |
85 | 0 | } |
86 | 0 | } Unexecuted instantiation: QuantLib::TenorOptionletVTS::TenorOptionletSmileSection::TenorOptionletSmileSection(QuantLib::TenorOptionletVTS const&, double) Unexecuted instantiation: QuantLib::TenorOptionletVTS::TenorOptionletSmileSection::TenorOptionletSmileSection(QuantLib::TenorOptionletVTS const&, double) |
87 | | |
88 | 0 | Volatility TenorOptionletVTS::TenorOptionletSmileSection::volatilityImpl(Rate strike) const { |
89 | 0 | Real sum_v = 0.0; |
90 | 0 | for (Real k : v_) |
91 | 0 | sum_v += k; |
92 | 0 | std::vector<Real> volBase(v_.size()); |
93 | 0 | for (Size k = 0; k < fraRateBase_.size(); ++k) { |
94 | 0 | Real strike_k = (strike - (fraRateTarg_ - sum_v * fraRateBase_[k])) / sum_v; |
95 | 0 | volBase[k] = baseSmileSection_[k]->volatility(strike_k, Normal, 0.0); |
96 | 0 | } |
97 | 0 | Real var = 0.0; |
98 | 0 | for (Size i = 0; i < volBase.size(); ++i) { |
99 | 0 | var += v_[i] * v_[i] * volBase[i] * volBase[i]; |
100 | 0 | for (Size j = i + 1; j < volBase.size(); ++j) { |
101 | 0 | Real corr = (*correlation_)(startTimeBase_[i], startTimeBase_[j]); |
102 | 0 | var += 2.0 * corr * v_[i] * v_[j] * volBase[i] * volBase[j]; |
103 | 0 | } |
104 | 0 | } |
105 | 0 | Real vol = sqrt(var); |
106 | 0 | return vol; |
107 | 0 | } |
108 | | |
109 | | |
110 | | } |