/src/quantlib/ql/experimental/forward/analytichestonforwardeuropeanengine.cpp
Line | Count | Source |
1 | | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | |
3 | | /* |
4 | | Copyright (C) 2020 Jack Gillett |
5 | | |
6 | | This file is part of QuantLib, a free-software/open-source library |
7 | | for financial quantitative analysts and developers - http://quantlib.org/ |
8 | | |
9 | | QuantLib is free software: you can redistribute it and/or modify it |
10 | | under the terms of the QuantLib license. You should have received a |
11 | | copy of the license along with this program; if not, please email |
12 | | <quantlib-dev@lists.sf.net>. The license is also available online at |
13 | | <https://www.quantlib.org/license.shtml>. |
14 | | |
15 | | This program is distributed in the hope that it will be useful, but WITHOUT |
16 | | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 | | FOR A PARTICULAR PURPOSE. See the license for more details. |
18 | | */ |
19 | | |
20 | | #include <ql/experimental/forward/analytichestonforwardeuropeanengine.hpp> |
21 | | #include <complex> |
22 | | #include <utility> |
23 | | |
24 | | namespace QuantLib { |
25 | | |
26 | | |
27 | | class P12Integrand { |
28 | | private: |
29 | | ext::shared_ptr<AnalyticHestonEngine>& engine_; |
30 | | Real logK_, phiRightLimit_; |
31 | | Time tenor_; |
32 | | std::complex<Real> i_, adj_; |
33 | | public: |
34 | | P12Integrand(ext::shared_ptr<AnalyticHestonEngine>& engine, |
35 | | Real logK, |
36 | | Time tenor, |
37 | | bool P1, // true for P1, false for P2 |
38 | 0 | Real phiRightLimit = 100) : engine_(engine), logK_(logK), |
39 | 0 | phiRightLimit_(phiRightLimit), tenor_(tenor), i_(std::complex<Real>(0.0, 1.0)) { |
40 | | |
41 | | // Only difference between P1 and P2 integral is the additional term in the chF evaluation |
42 | 0 | if (P1) { |
43 | 0 | adj_ = std::complex<Real>(0.0, -1.0); |
44 | 0 | } else { |
45 | 0 | adj_ = std::complex<Real>(0.0, 0.0); |
46 | 0 | } |
47 | 0 | } |
48 | | |
49 | | // QL Gaussian Quadrature - map phi from [-1 to 1] to {0, phiRightLimit] |
50 | 0 | Real operator()(Real phi) const { |
51 | 0 | Real phiDash = (0.5+1e-8+0.5*phi) * phiRightLimit_; // Map phi to full range |
52 | 0 | return 0.5*phiRightLimit_*std::real((std::exp(-phiDash*logK_*i_) / (phiDash*i_)) * engine_->chF(phiDash+adj_, tenor_)); |
53 | 0 | } |
54 | | }; |
55 | | |
56 | | |
57 | | class P12HatIntegrand { |
58 | | private: |
59 | | Time tenor_, resetTime_; |
60 | | Handle<Quote>& s0_; |
61 | | bool P1_; |
62 | | Real logK_, phiRightLimit_, nuRightLimit_; |
63 | | const AnalyticHestonForwardEuropeanEngine* const parent_; |
64 | | GaussLegendreIntegration innerIntegrator_; |
65 | | public: |
66 | | P12HatIntegrand(Time tenor, |
67 | | Time resetTime, |
68 | | Handle<Quote>& s0, |
69 | | Real logK, |
70 | | bool P1, // true for P1, false for P2 |
71 | | const AnalyticHestonForwardEuropeanEngine* const parent, |
72 | | Real phiRightLimit, |
73 | 0 | Real nuRightLimit) : tenor_(tenor), resetTime_(resetTime), |
74 | 0 | s0_(s0), P1_(P1), logK_(logK), phiRightLimit_(phiRightLimit), |
75 | 0 | nuRightLimit_(nuRightLimit), parent_(parent), innerIntegrator_(128) {} |
76 | 0 | Real operator()(Real nu) const { |
77 | | |
78 | | // Rescale nu to [-1, 1] |
79 | 0 | Real nuDash = nuRightLimit_ * (0.5 * nu + 0.5 + 1e-8); |
80 | | |
81 | | // Calculate the chF from var(t) to expiry |
82 | 0 | ext::shared_ptr<AnalyticHestonEngine> engine = parent_->forwardChF(s0_, nuDash); |
83 | 0 | P12Integrand pIntegrand(engine, logK_, tenor_, P1_, phiRightLimit_); |
84 | 0 | Real p1Integral = innerIntegrator_(pIntegrand); |
85 | | |
86 | | // Calculate the value of the propagator to nu |
87 | 0 | Real propagator = parent_->propagator(resetTime_, nuDash); |
88 | | |
89 | | // Take the product, and scale integral's value back up to [0, right_lim] |
90 | 0 | return propagator * (0.5 + p1Integral/M_PI); |
91 | 0 | } |
92 | | }; |
93 | | |
94 | | |
95 | | AnalyticHestonForwardEuropeanEngine::AnalyticHestonForwardEuropeanEngine( |
96 | | ext::shared_ptr<HestonProcess> process, Size integrationOrder) |
97 | 0 | : process_(std::move(process)), integrationOrder_(integrationOrder), outerIntegrator_(128) { |
98 | |
|
99 | 0 | v0_ = process_->v0(); |
100 | 0 | rho_ = process_->rho(); |
101 | 0 | kappa_ = process_->kappa(); |
102 | 0 | theta_ = process_->theta(); |
103 | 0 | sigma_ = process_->sigma(); |
104 | 0 | s0_ = process_->s0(); |
105 | |
|
106 | 0 | QL_REQUIRE(sigma_ > 0.1, |
107 | 0 | "Very low values (<~10%) for Heston Vol-of-Vol cause numerical issues" \ |
108 | 0 | "in this implementation of the propagator function, try using" \ |
109 | 0 | "MCForwardEuropeanHestonEngine Monte-Carlo engine instead"); |
110 | | |
111 | 0 | riskFreeRate_ = process_->riskFreeRate(); |
112 | 0 | dividendYield_ = process_->dividendYield(); |
113 | | |
114 | | // Some of the required constant intermediate variables can be calculated now |
115 | 0 | kappaHat_ = kappa_ - rho_ * sigma_; |
116 | 0 | thetaHat_ = kappa_ * theta_ / kappaHat_; |
117 | 0 | R_ = 4 * kappaHat_ * thetaHat_ / (sigma_ * sigma_); |
118 | 0 | } |
119 | | |
120 | | |
121 | 0 | void AnalyticHestonForwardEuropeanEngine::calculate() const { |
122 | | // This is a european option pricer |
123 | 0 | QL_REQUIRE(this->arguments_.exercise->type() == Exercise::European, |
124 | 0 | "not an European option"); |
125 | | |
126 | | // We only price plain vanillas |
127 | 0 | ext::shared_ptr<PlainVanillaPayoff> payoff = |
128 | 0 | ext::dynamic_pointer_cast<PlainVanillaPayoff>(this->arguments_.payoff); |
129 | 0 | QL_REQUIRE(payoff, "non plain vanilla payoff given"); |
130 | | |
131 | 0 | Time resetTime = this->process_->time(this->arguments_.resetDate); |
132 | 0 | Time expiryTime = this->process_->time(this->arguments_.exercise->lastDate()); |
133 | 0 | Time tenor = expiryTime - resetTime; |
134 | 0 | Real moneyness = this->arguments_.moneyness; |
135 | | |
136 | | // K needs to be scaled to forward AT RESET TIME, not spot... |
137 | 0 | Real expiryDcf = riskFreeRate_->discount(expiryTime); |
138 | 0 | Real resetDcf = riskFreeRate_->discount(resetTime); |
139 | 0 | Real expiryDividendDiscount = dividendYield_->discount(expiryTime); |
140 | 0 | Real resetDividendDiscount = dividendYield_->discount(resetTime); |
141 | 0 | Real expiryRatio = expiryDcf / expiryDividendDiscount; |
142 | 0 | Real resetRatio = resetDcf / resetDividendDiscount; |
143 | |
|
144 | 0 | QL_REQUIRE(resetTime >= 0.0, "Reset Date cannot be in the past"); |
145 | 0 | QL_REQUIRE(expiryTime >= 0.0, "Expiry Date cannot be in the past"); |
146 | | |
147 | | // Use some heuristics to decide upon phiRightLimit and nuRightLimit |
148 | 0 | Real phiRightLimit = 100.0; |
149 | 0 | Real nuRightLimit = std::max(2.0, 10.0 * (1+std::max(0.0, rho_)) * sigma_ * std::sqrt(resetTime * std::max(v0_, theta_))); |
150 | | |
151 | | // do the 2D integral calculation. For very short times, we just fall back on the standard |
152 | | // calculation, both for accuracy and because tStar==0 causes some numerical issues... |
153 | 0 | std::pair<Real, Real> P1HatP2Hat; |
154 | 0 | if (resetTime <= 1e-3) { |
155 | 0 | Handle<Quote> tempQuote(ext::shared_ptr<Quote>(new SimpleQuote(s0_->value()))); |
156 | 0 | P1HatP2Hat = calculateP1P2(tenor, tempQuote, moneyness * s0_->value(), expiryRatio, phiRightLimit); |
157 | 0 | } else { |
158 | 0 | P1HatP2Hat = calculateP1P2Hat(tenor, resetTime, moneyness, expiryRatio/resetRatio, phiRightLimit, nuRightLimit); |
159 | 0 | } |
160 | | |
161 | | // Apply the payoff functions |
162 | 0 | Real value = 0.0; |
163 | 0 | Real F = s0_->value() / expiryRatio; |
164 | 0 | switch (payoff->optionType()){ |
165 | 0 | case Option::Call: |
166 | 0 | value = expiryDcf * (F*P1HatP2Hat.first - moneyness*s0_->value()*P1HatP2Hat.second/resetRatio); |
167 | 0 | break; |
168 | 0 | case Option::Put: |
169 | 0 | value = expiryDcf * (moneyness*s0_->value()*(1-P1HatP2Hat.second)/resetRatio - F*(1-P1HatP2Hat.first)); |
170 | 0 | break; |
171 | 0 | default: |
172 | 0 | QL_FAIL("unknown option type"); |
173 | 0 | } |
174 | | |
175 | 0 | results_.value = value; |
176 | |
|
177 | 0 | results_.additionalResults["dcf"] = expiryDcf; |
178 | 0 | results_.additionalResults["qf"] = expiryDividendDiscount; |
179 | 0 | results_.additionalResults["expiryRatio"] = expiryRatio; |
180 | 0 | results_.additionalResults["resetRatio"] = resetRatio; |
181 | 0 | results_.additionalResults["moneyness"] = moneyness; |
182 | 0 | results_.additionalResults["s0"] = s0_->value(); |
183 | 0 | results_.additionalResults["fwd"] = F; |
184 | 0 | results_.additionalResults["resetTime"] = resetTime; |
185 | 0 | results_.additionalResults["expiryTime"] = expiryTime; |
186 | 0 | results_.additionalResults["P1Hat"] = P1HatP2Hat.first; |
187 | 0 | results_.additionalResults["P2Hat"] = P1HatP2Hat.second; |
188 | 0 | results_.additionalResults["phiRightLimit"] = phiRightLimit; |
189 | 0 | results_.additionalResults["nuRightLimit"] = nuRightLimit; |
190 | 0 | } |
191 | | |
192 | | |
193 | | std::pair<Real, Real> AnalyticHestonForwardEuropeanEngine::calculateP1P2Hat(Time tenor, |
194 | | Time resetTime, |
195 | | Real moneyness, |
196 | | Real ratio, |
197 | | Real phiRightLimit, |
198 | 0 | Real nuRightLimit) const { |
199 | |
|
200 | 0 | Handle<Quote> unitQuote(ext::shared_ptr<Quote>(new SimpleQuote(1.0))); |
201 | | |
202 | | // Re-expressing moneyness in terms of the forward here (strike fixes to spot, but in |
203 | | // our pricing calculation we need to compare it to the future at expiry) |
204 | 0 | Real logMoneyness = std::log(moneyness*ratio); |
205 | |
|
206 | 0 | P12HatIntegrand p1HatIntegrand(tenor, resetTime, unitQuote, logMoneyness, true, this, phiRightLimit, nuRightLimit); |
207 | 0 | P12HatIntegrand p2HatIntegrand(tenor, resetTime, unitQuote, logMoneyness, false, this, phiRightLimit, nuRightLimit); |
208 | |
|
209 | 0 | Real p1HatIntegral = 0.5 * nuRightLimit * outerIntegrator_(p1HatIntegrand); |
210 | 0 | Real p2HatIntegral = 0.5 * nuRightLimit * outerIntegrator_(p2HatIntegrand); |
211 | |
|
212 | 0 | std::pair<Real, Real> P1HatP2Hat(p1HatIntegral, p2HatIntegral); |
213 | |
|
214 | 0 | return P1HatP2Hat; |
215 | 0 | } |
216 | | |
217 | | |
218 | | Real AnalyticHestonForwardEuropeanEngine::propagator(Time resetTime, |
219 | 0 | Real varReset) const { |
220 | 0 | Real B, Lambda, term1, term2, term3; |
221 | |
|
222 | 0 | B = 4 * kappaHat_ / (sigma_ * sigma_ * (1 - std::exp(-kappaHat_ * resetTime))); |
223 | 0 | Lambda = B * std::exp(-kappaHat_ * resetTime) * v0_; |
224 | | |
225 | | // Now construct equation (18) from the paper term-by-term |
226 | 0 | term1 = std::exp(-0.5*(B * varReset + Lambda)) * B / 2; |
227 | 0 | term2 = std::pow(B * varReset / Lambda, 0.5*(R_/2 - 1)); |
228 | 0 | term3 = modifiedBesselFunction_i(Real(R_/2 - 1),Real(std::sqrt(Lambda * B * varReset))); |
229 | |
|
230 | 0 | return term1 * term2 * term3; |
231 | 0 | } |
232 | | |
233 | | ext::shared_ptr<AnalyticHestonEngine> AnalyticHestonForwardEuropeanEngine::forwardChF( |
234 | | Handle<Quote>& spotReset, |
235 | 0 | Real varReset) const { |
236 | | |
237 | | // Probably a wasteful implementation here, could be improved by importing |
238 | | // only the CF-generating parts of the AnalyticHestonEngine (currently private) |
239 | 0 | ext::shared_ptr<HestonProcess> hestonProcess(new |
240 | 0 | HestonProcess(riskFreeRate_, dividendYield_, spotReset, |
241 | 0 | varReset, kappa_, theta_, sigma_, rho_)); |
242 | |
|
243 | 0 | ext::shared_ptr<HestonModel> hestonModel(new HestonModel(hestonProcess)); |
244 | |
|
245 | 0 | ext::shared_ptr<AnalyticHestonEngine> analyticHestonEngine( |
246 | 0 | new AnalyticHestonEngine(hestonModel, integrationOrder_)); |
247 | | |
248 | | // Not sure how to pass only the chF, so just pass the whole thing for now! |
249 | 0 | return analyticHestonEngine; |
250 | 0 | } |
251 | | |
252 | | |
253 | | std::pair<Real, Real> AnalyticHestonForwardEuropeanEngine::calculateP1P2(Time tenor, |
254 | | Handle<Quote>& St, |
255 | | Real K, |
256 | | Real ratio, |
257 | 0 | Real phiRightLimit) const { |
258 | |
|
259 | 0 | ext::shared_ptr<AnalyticHestonEngine> engine = forwardChF(St, v0_); |
260 | 0 | Real logK = std::log(K*ratio/St->value()); |
261 | | |
262 | | // Integrate the CF and the complex integrand over positive phi |
263 | 0 | GaussLegendreIntegration integrator = GaussLegendreIntegration(128); |
264 | 0 | P12Integrand p1Integrand(engine, logK, tenor, true, phiRightLimit); |
265 | 0 | P12Integrand p2Integrand(engine, logK, tenor, false, phiRightLimit); |
266 | |
|
267 | 0 | Real p1Integral = integrator(p1Integrand); |
268 | 0 | Real p2Integral = integrator(p2Integrand); |
269 | |
|
270 | 0 | std::pair<Real, Real> P1P2(0.5 + p1Integral/M_PI, 0.5 + p2Integral/M_PI); |
271 | |
|
272 | 0 | return P1P2; |
273 | 0 | } |
274 | | } |