Coverage Report

Created: 2026-01-25 06:59

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/quantlib/ql/math/autocovariance.hpp
Line
Count
Source
1
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3
/*
4
 Copyright (C) 2010 Liquidnet Holdings, Inc.
5
6
 This file is part of QuantLib, a free-software/open-source library
7
 for financial quantitative analysts and developers - http://quantlib.org/
8
9
 QuantLib is free software: you can redistribute it and/or modify it
10
 under the terms of the QuantLib license.  You should have received a
11
 copy of the license along with this program; if not, please email
12
 <quantlib-dev@lists.sf.net>. The license is also available online at
13
 <https://www.quantlib.org/license.shtml>.
14
15
 This program is distributed in the hope that it will be useful, but WITHOUT
16
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17
 FOR A PARTICULAR PURPOSE.  See the license for more details.
18
*/
19
20
/*! \file autocovariance.hpp
21
    \brief autocovariance and convolution calculation
22
*/
23
24
#ifndef quantlib_auto_covariance_hpp
25
#define quantlib_auto_covariance_hpp
26
27
#include <ql/math/fastfouriertransform.hpp>
28
#include <ql/math/array.hpp>
29
#include <complex>
30
#include <vector>
31
#include <algorithm>
32
#include <functional>
33
34
namespace QuantLib {
35
36
    namespace detail {
37
38
        // Outputs double FT for a given input:
39
        // input -> FFT -> norm -> FFT -> out
40
        template <typename ForwardIterator>
41
        std::vector<std::complex<Real> > double_ft(ForwardIterator begin,
42
0
                                                   ForwardIterator end) {
43
0
            std::size_t nData = std::distance(begin, end);
44
0
            std::size_t order = FastFourierTransform::min_order(nData) + 1;
45
0
            FastFourierTransform fft(order);
46
0
            std::vector<std::complex<Real> > ft(fft.output_size());
47
0
            fft.transform(begin, end, ft.begin());
48
0
            Array tmp(ft.size(), 0.0);
49
0
            std::complex<Real> z = std::complex<Real>();
50
0
            for (Size i=0; i<ft.size(); ++i) {
51
0
                tmp[i] = std::norm(ft[i]);
52
0
                ft[i] = z;
53
0
            }
54
0
            fft.transform(tmp.begin(), tmp.end(), ft.begin());
55
0
            return ft;
56
0
        }
57
58
59
        // Calculates and subtracts mean from the input data; returns mean
60
        template <typename InputIterator, typename OutputIterator>
61
        Real remove_mean(InputIterator begin, InputIterator end,
62
                         OutputIterator out) {
63
            Real mean(0.0);
64
            std::size_t n = 1;
65
            for (InputIterator it = begin; it != end; ++it, ++n)
66
                mean = (mean*Real(n-1) + *it)/n;
67
            std::transform(begin, end, out, [=](Real x) -> Real { return x - mean; });
68
            return mean;
69
        }
70
71
    }
72
73
74
    //! Convolutions of the input sequence.
75
    /*! Calculates x[0]*x[n]+x[1]*x[n+1]+x[2]*x[n+2]+...
76
        for n = 0,1,...,maxLag via FFT.
77
78
        \pre The size of the output sequence must be maxLag + 1
79
    */
80
    template <typename ForwardIterator, typename OutputIterator>
81
    void convolutions(ForwardIterator begin, ForwardIterator end,
82
                      OutputIterator out, std::size_t maxLag) {
83
        using namespace detail;
84
        std::size_t nData = std::distance(begin, end);
85
        QL_REQUIRE(maxLag < nData, "maxLag must be less than data size");
86
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
87
        Real w = 1.0 / (Real)ft.size();
88
        for (std::size_t k = 0; k <= maxLag; ++k)
89
            *out++ = ft[k].real() * w;
90
    }
91
92
    //! Unbiased auto-covariances
93
    /*! Results are calculated via FFT.
94
95
        \pre Input data are supposed to be centered (i.e., zero mean).
96
        \pre The size of the output sequence must be maxLag + 1
97
    */
98
    template <typename ForwardIterator, typename OutputIterator>
99
    void autocovariances(ForwardIterator begin, ForwardIterator end,
100
0
                         OutputIterator out, std::size_t maxLag) {
101
0
        using namespace detail;
102
0
        std::size_t nData = std::distance(begin, end);
103
0
        QL_REQUIRE(maxLag < nData,
104
0
                   "number of covariances must be less than data size");
105
0
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
106
0
        Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
107
0
        for (std::size_t k = 0; k <= maxLag; ++k, w2 -= 1.0) {
108
0
            *out++ = ft[k].real() * w1 / w2;
109
0
        }
110
0
    }
111
112
    //! Unbiased auto-covariances
113
    /*! Results are calculated via FFT.
114
115
        This overload accepts non-centered data, removes the mean and
116
        returns it as a result.  The centered sequence is written back
117
        into the input sequence if the reuse parameter is true.
118
119
        \pre The size of the output sequence must be maxLag + 1
120
    */
121
    template <typename ForwardIterator, typename OutputIterator>
122
    Real autocovariances(ForwardIterator begin, ForwardIterator end,
123
                         OutputIterator out,
124
                         std::size_t maxLag, bool reuse) {
125
        using namespace detail;
126
        Real mean = 0.0;
127
        if (reuse) {
128
            mean = remove_mean(begin, end, begin);
129
            autocovariances(begin, end, out, maxLag);
130
        } else {
131
            Array tmp(std::distance(begin, end));
132
            mean = remove_mean(begin, end, tmp.begin());
133
            autocovariances(tmp.begin(), tmp.end(), out, maxLag);
134
        }
135
        return mean;
136
    }
137
138
139
    //! Unbiased auto-correlations.
140
    /*! Results are calculated via FFT.
141
        The first element of the output is the unbiased sample variance.
142
143
        \pre Input data are supposed to be centered (i.e., zero mean).
144
        \pre The size of the output sequence must be maxLag + 1
145
    */
146
    template <typename ForwardIterator, typename OutputIterator>
147
    void autocorrelations(ForwardIterator begin, ForwardIterator end,
148
                          OutputIterator out, std::size_t maxLag) {
149
        using namespace detail;
150
        std::size_t nData = std::distance(begin, end);
151
        QL_REQUIRE(maxLag < nData,
152
                   "number of correlations must be less than data size");
153
        const std::vector<std::complex<Real> >& ft = double_ft(begin, end);
154
        Real w1 = 1.0 / (Real)ft.size(), w2 = (Real)nData;
155
        Real variance = ft[0].real() * w1 / w2;
156
        *out++ = variance * w2 / (w2-1.0);
157
        w2 -= 1.0;
158
        for (std::size_t k = 1; k <= maxLag; ++k, w2 -= 1.0)
159
            *out++ = ft[k].real() * w1 / (variance * w2);
160
    }
161
162
    //! Unbiased auto-correlations.
163
    /*! Results are calculated via FFT.
164
        The first element of the output is the unbiased sample variance.
165
166
        This overload accepts non-centered data, removes the mean and
167
        returns it as a result.  The centered sequence is written back
168
        into the input sequence if the reuse parameter is true.
169
170
        \pre The size of the output sequence must be maxLag + 1
171
    */
172
    template <typename ForwardIterator, typename OutputIterator>
173
    Real autocorrelations(ForwardIterator begin, ForwardIterator end,
174
                          OutputIterator out,
175
                          std::size_t maxLag, bool reuse) {
176
        using namespace detail;
177
        Real mean = 0.0;
178
        if (reuse) {
179
            mean = remove_mean(begin, end, begin);
180
            autocorrelations(begin, end, out, maxLag);
181
        } else {
182
            Array tmp(std::distance(begin, end));
183
            mean = remove_mean(begin, end, tmp.begin());
184
            autocorrelations(tmp.begin(), tmp.end(), out, maxLag);
185
        }
186
        return mean;
187
    }
188
189
}
190
191
#endif